Tunable architecture for flexible and highly conductive graphene–polymer composites

Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 – neither clogging nor floccu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2014-05, Vol.95, p.82-88
Hauptverfasser: Noël, Amélie, Faucheu, Jenny, Rieu, Mathilde, Viricelle, Jean-Paul, Bourgeat-Lami, Elodie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue
container_start_page 82
container_title Composites science and technology
container_volume 95
creator Noël, Amélie
Faucheu, Jenny
Rieu, Mathilde
Viricelle, Jean-Paul
Bourgeat-Lami, Elodie
description Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 – neither clogging nor flocculation, 2 – spontaneous film formation around room temperature, 3 – high conductivity. Nanosized Multilayered Graphene (NMG) is produced through a solvent-free procedure, using a grinding process in water. These NMG suspensions are used to elaborate conductive composite materials through physical blending with emulsifier-free latex. The nanocomposite microstructure exhibits a well-defined cellular architecture that highlights the formation of continuous paths of fillers throughout the material. The conductivity behavior of the nanocomposite material was efficiently described using a percolation model: the conductivity can be tuned by changing the NMG content and the latex size. A low percolation threshold (0.1vol%) was obtained and the electrical conductivity reached 217Sm−1 for 6 vol% NMG. Efficient film forming occurs at room temperature leading to continuous and deformable materials, which is adequate for printing on flexible and textile substrates. The applicability in electronics is demonstrated by the use of the nanocomposite material in replacement of copper wires in a LED setup.
doi_str_mv 10.1016/j.compscitech.2014.02.013
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00966122v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353814000591</els_id><sourcerecordid>1671600001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-b1909848a76425ae06252107ae8532fcd5c8e3602fb6fecb2a18a7a8d6e012f83</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVJoZu07-AeAu3B7ki2ZfkYlrYJLPSSnIVWHsVatJYj2Uv3lnfIG_ZJKmdDyDGnAc033wy_CPlKoaBA-Y9dof1-jNpOqPuCAa0KYAXQ8gNZUdG0OYUazsgKGOd5WZfiEzmPcQcATd2yFbm7nQe1dZipoPtFMs0BM-NDZhz-tc-doct6e9-7Y6b90M16sgfM7oMaexzw3-PT6N1xjyFbLvExSeJn8tEoF_HLS70gd79-3q6v882f3zfrq02uK1FN-Za20IpKqIZXrFYInNWMQqNQ1CUzuqu1wJIDM1tuUG-ZoolVouMIlBlRXpDvJ2-vnByD3atwlF5ZeX21kcsbQMs5ZexAE_vtxI7BP8wYJ7m3UaNzakA_R0l5Q3nKBRa0PaE6-BgDmlc3BbnELnfyTexyiV0Ck2k0zV6-rFFRK2eCGrSNrwImykrQskrc-sRhyudgMchkw0FjZ0P6Bdl5-45t_wHcnp_S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671600001</pqid></control><display><type>article</type><title>Tunable architecture for flexible and highly conductive graphene–polymer composites</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Noël, Amélie ; Faucheu, Jenny ; Rieu, Mathilde ; Viricelle, Jean-Paul ; Bourgeat-Lami, Elodie</creator><creatorcontrib>Noël, Amélie ; Faucheu, Jenny ; Rieu, Mathilde ; Viricelle, Jean-Paul ; Bourgeat-Lami, Elodie</creatorcontrib><description>Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 – neither clogging nor flocculation, 2 – spontaneous film formation around room temperature, 3 – high conductivity. Nanosized Multilayered Graphene (NMG) is produced through a solvent-free procedure, using a grinding process in water. These NMG suspensions are used to elaborate conductive composite materials through physical blending with emulsifier-free latex. The nanocomposite microstructure exhibits a well-defined cellular architecture that highlights the formation of continuous paths of fillers throughout the material. The conductivity behavior of the nanocomposite material was efficiently described using a percolation model: the conductivity can be tuned by changing the NMG content and the latex size. A low percolation threshold (0.1vol%) was obtained and the electrical conductivity reached 217Sm−1 for 6 vol% NMG. Efficient film forming occurs at room temperature leading to continuous and deformable materials, which is adequate for printing on flexible and textile substrates. The applicability in electronics is demonstrated by the use of the nanocomposite material in replacement of copper wires in a LED setup.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2014.02.013</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Flexible composites ; A. Nanocomposites ; Applied sciences ; Architecture ; B. Electrical properties ; Chemical and Process Engineering ; Composites ; Electronics ; Engineering Sciences ; Exact sciences and technology ; Forms of application and semi-finished materials ; Graphene ; Latex ; Nanocomposite materials ; Nanostructure ; Polymer industry, paints, wood ; Resistivity ; Technology of polymers ; Textiles</subject><ispartof>Composites science and technology, 2014-05, Vol.95, p.82-88</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-b1909848a76425ae06252107ae8532fcd5c8e3602fb6fecb2a18a7a8d6e012f83</citedby><cites>FETCH-LOGICAL-c484t-b1909848a76425ae06252107ae8532fcd5c8e3602fb6fecb2a18a7a8d6e012f83</cites><orcidid>0000-0002-7293-6591 ; 0000-0002-7049-3897 ; 0000-0003-2584-2119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2014.02.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28348134$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00966122$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Noël, Amélie</creatorcontrib><creatorcontrib>Faucheu, Jenny</creatorcontrib><creatorcontrib>Rieu, Mathilde</creatorcontrib><creatorcontrib>Viricelle, Jean-Paul</creatorcontrib><creatorcontrib>Bourgeat-Lami, Elodie</creatorcontrib><title>Tunable architecture for flexible and highly conductive graphene–polymer composites</title><title>Composites science and technology</title><description>Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 – neither clogging nor flocculation, 2 – spontaneous film formation around room temperature, 3 – high conductivity. Nanosized Multilayered Graphene (NMG) is produced through a solvent-free procedure, using a grinding process in water. These NMG suspensions are used to elaborate conductive composite materials through physical blending with emulsifier-free latex. The nanocomposite microstructure exhibits a well-defined cellular architecture that highlights the formation of continuous paths of fillers throughout the material. The conductivity behavior of the nanocomposite material was efficiently described using a percolation model: the conductivity can be tuned by changing the NMG content and the latex size. A low percolation threshold (0.1vol%) was obtained and the electrical conductivity reached 217Sm−1 for 6 vol% NMG. Efficient film forming occurs at room temperature leading to continuous and deformable materials, which is adequate for printing on flexible and textile substrates. The applicability in electronics is demonstrated by the use of the nanocomposite material in replacement of copper wires in a LED setup.</description><subject>A. Flexible composites</subject><subject>A. Nanocomposites</subject><subject>Applied sciences</subject><subject>Architecture</subject><subject>B. Electrical properties</subject><subject>Chemical and Process Engineering</subject><subject>Composites</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Graphene</subject><subject>Latex</subject><subject>Nanocomposite materials</subject><subject>Nanostructure</subject><subject>Polymer industry, paints, wood</subject><subject>Resistivity</subject><subject>Technology of polymers</subject><subject>Textiles</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhkVJoZu07-AeAu3B7ki2ZfkYlrYJLPSSnIVWHsVatJYj2Uv3lnfIG_ZJKmdDyDGnAc033wy_CPlKoaBA-Y9dof1-jNpOqPuCAa0KYAXQ8gNZUdG0OYUazsgKGOd5WZfiEzmPcQcATd2yFbm7nQe1dZipoPtFMs0BM-NDZhz-tc-doct6e9-7Y6b90M16sgfM7oMaexzw3-PT6N1xjyFbLvExSeJn8tEoF_HLS70gd79-3q6v882f3zfrq02uK1FN-Za20IpKqIZXrFYInNWMQqNQ1CUzuqu1wJIDM1tuUG-ZoolVouMIlBlRXpDvJ2-vnByD3atwlF5ZeX21kcsbQMs5ZexAE_vtxI7BP8wYJ7m3UaNzakA_R0l5Q3nKBRa0PaE6-BgDmlc3BbnELnfyTexyiV0Ck2k0zV6-rFFRK2eCGrSNrwImykrQskrc-sRhyudgMchkw0FjZ0P6Bdl5-45t_wHcnp_S</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Noël, Amélie</creator><creator>Faucheu, Jenny</creator><creator>Rieu, Mathilde</creator><creator>Viricelle, Jean-Paul</creator><creator>Bourgeat-Lami, Elodie</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7293-6591</orcidid><orcidid>https://orcid.org/0000-0002-7049-3897</orcidid><orcidid>https://orcid.org/0000-0003-2584-2119</orcidid></search><sort><creationdate>20140501</creationdate><title>Tunable architecture for flexible and highly conductive graphene–polymer composites</title><author>Noël, Amélie ; Faucheu, Jenny ; Rieu, Mathilde ; Viricelle, Jean-Paul ; Bourgeat-Lami, Elodie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-b1909848a76425ae06252107ae8532fcd5c8e3602fb6fecb2a18a7a8d6e012f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>A. Flexible composites</topic><topic>A. Nanocomposites</topic><topic>Applied sciences</topic><topic>Architecture</topic><topic>B. Electrical properties</topic><topic>Chemical and Process Engineering</topic><topic>Composites</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Graphene</topic><topic>Latex</topic><topic>Nanocomposite materials</topic><topic>Nanostructure</topic><topic>Polymer industry, paints, wood</topic><topic>Resistivity</topic><topic>Technology of polymers</topic><topic>Textiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noël, Amélie</creatorcontrib><creatorcontrib>Faucheu, Jenny</creatorcontrib><creatorcontrib>Rieu, Mathilde</creatorcontrib><creatorcontrib>Viricelle, Jean-Paul</creatorcontrib><creatorcontrib>Bourgeat-Lami, Elodie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noël, Amélie</au><au>Faucheu, Jenny</au><au>Rieu, Mathilde</au><au>Viricelle, Jean-Paul</au><au>Bourgeat-Lami, Elodie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable architecture for flexible and highly conductive graphene–polymer composites</atitle><jtitle>Composites science and technology</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>95</volume><spage>82</spage><epage>88</epage><pages>82-88</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 – neither clogging nor flocculation, 2 – spontaneous film formation around room temperature, 3 – high conductivity. Nanosized Multilayered Graphene (NMG) is produced through a solvent-free procedure, using a grinding process in water. These NMG suspensions are used to elaborate conductive composite materials through physical blending with emulsifier-free latex. The nanocomposite microstructure exhibits a well-defined cellular architecture that highlights the formation of continuous paths of fillers throughout the material. The conductivity behavior of the nanocomposite material was efficiently described using a percolation model: the conductivity can be tuned by changing the NMG content and the latex size. A low percolation threshold (0.1vol%) was obtained and the electrical conductivity reached 217Sm−1 for 6 vol% NMG. Efficient film forming occurs at room temperature leading to continuous and deformable materials, which is adequate for printing on flexible and textile substrates. The applicability in electronics is demonstrated by the use of the nanocomposite material in replacement of copper wires in a LED setup.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2014.02.013</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7293-6591</orcidid><orcidid>https://orcid.org/0000-0002-7049-3897</orcidid><orcidid>https://orcid.org/0000-0003-2584-2119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2014-05, Vol.95, p.82-88
issn 0266-3538
1879-1050
language eng
recordid cdi_hal_primary_oai_HAL_hal_00966122v1
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects A. Flexible composites
A. Nanocomposites
Applied sciences
Architecture
B. Electrical properties
Chemical and Process Engineering
Composites
Electronics
Engineering Sciences
Exact sciences and technology
Forms of application and semi-finished materials
Graphene
Latex
Nanocomposite materials
Nanostructure
Polymer industry, paints, wood
Resistivity
Technology of polymers
Textiles
title Tunable architecture for flexible and highly conductive graphene–polymer composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20architecture%20for%20flexible%20and%20highly%20conductive%20graphene%E2%80%93polymer%20composites&rft.jtitle=Composites%20science%20and%20technology&rft.au=No%C3%ABl,%20Am%C3%A9lie&rft.date=2014-05-01&rft.volume=95&rft.spage=82&rft.epage=88&rft.pages=82-88&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2014.02.013&rft_dat=%3Cproquest_hal_p%3E1671600001%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671600001&rft_id=info:pmid/&rft_els_id=S0266353814000591&rfr_iscdi=true