Tunable architecture for flexible and highly conductive graphene–polymer composites
Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 – neither clogging nor floccu...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2014-05, Vol.95, p.82-88 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | |
container_start_page | 82 |
container_title | Composites science and technology |
container_volume | 95 |
creator | Noël, Amélie Faucheu, Jenny Rieu, Mathilde Viricelle, Jean-Paul Bourgeat-Lami, Elodie |
description | Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 – neither clogging nor flocculation, 2 – spontaneous film formation around room temperature, 3 – high conductivity. Nanosized Multilayered Graphene (NMG) is produced through a solvent-free procedure, using a grinding process in water. These NMG suspensions are used to elaborate conductive composite materials through physical blending with emulsifier-free latex. The nanocomposite microstructure exhibits a well-defined cellular architecture that highlights the formation of continuous paths of fillers throughout the material. The conductivity behavior of the nanocomposite material was efficiently described using a percolation model: the conductivity can be tuned by changing the NMG content and the latex size. A low percolation threshold (0.1vol%) was obtained and the electrical conductivity reached 217Sm−1 for 6 vol% NMG. Efficient film forming occurs at room temperature leading to continuous and deformable materials, which is adequate for printing on flexible and textile substrates. The applicability in electronics is demonstrated by the use of the nanocomposite material in replacement of copper wires in a LED setup. |
doi_str_mv | 10.1016/j.compscitech.2014.02.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00966122v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353814000591</els_id><sourcerecordid>1671600001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-b1909848a76425ae06252107ae8532fcd5c8e3602fb6fecb2a18a7a8d6e012f83</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVJoZu07-AeAu3B7ki2ZfkYlrYJLPSSnIVWHsVatJYj2Uv3lnfIG_ZJKmdDyDGnAc033wy_CPlKoaBA-Y9dof1-jNpOqPuCAa0KYAXQ8gNZUdG0OYUazsgKGOd5WZfiEzmPcQcATd2yFbm7nQe1dZipoPtFMs0BM-NDZhz-tc-doct6e9-7Y6b90M16sgfM7oMaexzw3-PT6N1xjyFbLvExSeJn8tEoF_HLS70gd79-3q6v882f3zfrq02uK1FN-Za20IpKqIZXrFYInNWMQqNQ1CUzuqu1wJIDM1tuUG-ZoolVouMIlBlRXpDvJ2-vnByD3atwlF5ZeX21kcsbQMs5ZexAE_vtxI7BP8wYJ7m3UaNzakA_R0l5Q3nKBRa0PaE6-BgDmlc3BbnELnfyTexyiV0Ck2k0zV6-rFFRK2eCGrSNrwImykrQskrc-sRhyudgMchkw0FjZ0P6Bdl5-45t_wHcnp_S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671600001</pqid></control><display><type>article</type><title>Tunable architecture for flexible and highly conductive graphene–polymer composites</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Noël, Amélie ; Faucheu, Jenny ; Rieu, Mathilde ; Viricelle, Jean-Paul ; Bourgeat-Lami, Elodie</creator><creatorcontrib>Noël, Amélie ; Faucheu, Jenny ; Rieu, Mathilde ; Viricelle, Jean-Paul ; Bourgeat-Lami, Elodie</creatorcontrib><description>Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 – neither clogging nor flocculation, 2 – spontaneous film formation around room temperature, 3 – high conductivity. Nanosized Multilayered Graphene (NMG) is produced through a solvent-free procedure, using a grinding process in water. These NMG suspensions are used to elaborate conductive composite materials through physical blending with emulsifier-free latex. The nanocomposite microstructure exhibits a well-defined cellular architecture that highlights the formation of continuous paths of fillers throughout the material. The conductivity behavior of the nanocomposite material was efficiently described using a percolation model: the conductivity can be tuned by changing the NMG content and the latex size. A low percolation threshold (0.1vol%) was obtained and the electrical conductivity reached 217Sm−1 for 6 vol% NMG. Efficient film forming occurs at room temperature leading to continuous and deformable materials, which is adequate for printing on flexible and textile substrates. The applicability in electronics is demonstrated by the use of the nanocomposite material in replacement of copper wires in a LED setup.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2014.02.013</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Flexible composites ; A. Nanocomposites ; Applied sciences ; Architecture ; B. Electrical properties ; Chemical and Process Engineering ; Composites ; Electronics ; Engineering Sciences ; Exact sciences and technology ; Forms of application and semi-finished materials ; Graphene ; Latex ; Nanocomposite materials ; Nanostructure ; Polymer industry, paints, wood ; Resistivity ; Technology of polymers ; Textiles</subject><ispartof>Composites science and technology, 2014-05, Vol.95, p.82-88</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-b1909848a76425ae06252107ae8532fcd5c8e3602fb6fecb2a18a7a8d6e012f83</citedby><cites>FETCH-LOGICAL-c484t-b1909848a76425ae06252107ae8532fcd5c8e3602fb6fecb2a18a7a8d6e012f83</cites><orcidid>0000-0002-7293-6591 ; 0000-0002-7049-3897 ; 0000-0003-2584-2119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2014.02.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28348134$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00966122$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Noël, Amélie</creatorcontrib><creatorcontrib>Faucheu, Jenny</creatorcontrib><creatorcontrib>Rieu, Mathilde</creatorcontrib><creatorcontrib>Viricelle, Jean-Paul</creatorcontrib><creatorcontrib>Bourgeat-Lami, Elodie</creatorcontrib><title>Tunable architecture for flexible and highly conductive graphene–polymer composites</title><title>Composites science and technology</title><description>Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 – neither clogging nor flocculation, 2 – spontaneous film formation around room temperature, 3 – high conductivity. Nanosized Multilayered Graphene (NMG) is produced through a solvent-free procedure, using a grinding process in water. These NMG suspensions are used to elaborate conductive composite materials through physical blending with emulsifier-free latex. The nanocomposite microstructure exhibits a well-defined cellular architecture that highlights the formation of continuous paths of fillers throughout the material. The conductivity behavior of the nanocomposite material was efficiently described using a percolation model: the conductivity can be tuned by changing the NMG content and the latex size. A low percolation threshold (0.1vol%) was obtained and the electrical conductivity reached 217Sm−1 for 6 vol% NMG. Efficient film forming occurs at room temperature leading to continuous and deformable materials, which is adequate for printing on flexible and textile substrates. The applicability in electronics is demonstrated by the use of the nanocomposite material in replacement of copper wires in a LED setup.</description><subject>A. Flexible composites</subject><subject>A. Nanocomposites</subject><subject>Applied sciences</subject><subject>Architecture</subject><subject>B. Electrical properties</subject><subject>Chemical and Process Engineering</subject><subject>Composites</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Graphene</subject><subject>Latex</subject><subject>Nanocomposite materials</subject><subject>Nanostructure</subject><subject>Polymer industry, paints, wood</subject><subject>Resistivity</subject><subject>Technology of polymers</subject><subject>Textiles</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhkVJoZu07-AeAu3B7ki2ZfkYlrYJLPSSnIVWHsVatJYj2Uv3lnfIG_ZJKmdDyDGnAc033wy_CPlKoaBA-Y9dof1-jNpOqPuCAa0KYAXQ8gNZUdG0OYUazsgKGOd5WZfiEzmPcQcATd2yFbm7nQe1dZipoPtFMs0BM-NDZhz-tc-doct6e9-7Y6b90M16sgfM7oMaexzw3-PT6N1xjyFbLvExSeJn8tEoF_HLS70gd79-3q6v882f3zfrq02uK1FN-Za20IpKqIZXrFYInNWMQqNQ1CUzuqu1wJIDM1tuUG-ZoolVouMIlBlRXpDvJ2-vnByD3atwlF5ZeX21kcsbQMs5ZexAE_vtxI7BP8wYJ7m3UaNzakA_R0l5Q3nKBRa0PaE6-BgDmlc3BbnELnfyTexyiV0Ck2k0zV6-rFFRK2eCGrSNrwImykrQskrc-sRhyudgMchkw0FjZ0P6Bdl5-45t_wHcnp_S</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Noël, Amélie</creator><creator>Faucheu, Jenny</creator><creator>Rieu, Mathilde</creator><creator>Viricelle, Jean-Paul</creator><creator>Bourgeat-Lami, Elodie</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7293-6591</orcidid><orcidid>https://orcid.org/0000-0002-7049-3897</orcidid><orcidid>https://orcid.org/0000-0003-2584-2119</orcidid></search><sort><creationdate>20140501</creationdate><title>Tunable architecture for flexible and highly conductive graphene–polymer composites</title><author>Noël, Amélie ; Faucheu, Jenny ; Rieu, Mathilde ; Viricelle, Jean-Paul ; Bourgeat-Lami, Elodie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-b1909848a76425ae06252107ae8532fcd5c8e3602fb6fecb2a18a7a8d6e012f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>A. Flexible composites</topic><topic>A. Nanocomposites</topic><topic>Applied sciences</topic><topic>Architecture</topic><topic>B. Electrical properties</topic><topic>Chemical and Process Engineering</topic><topic>Composites</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Graphene</topic><topic>Latex</topic><topic>Nanocomposite materials</topic><topic>Nanostructure</topic><topic>Polymer industry, paints, wood</topic><topic>Resistivity</topic><topic>Technology of polymers</topic><topic>Textiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noël, Amélie</creatorcontrib><creatorcontrib>Faucheu, Jenny</creatorcontrib><creatorcontrib>Rieu, Mathilde</creatorcontrib><creatorcontrib>Viricelle, Jean-Paul</creatorcontrib><creatorcontrib>Bourgeat-Lami, Elodie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noël, Amélie</au><au>Faucheu, Jenny</au><au>Rieu, Mathilde</au><au>Viricelle, Jean-Paul</au><au>Bourgeat-Lami, Elodie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable architecture for flexible and highly conductive graphene–polymer composites</atitle><jtitle>Composites science and technology</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>95</volume><spage>82</spage><epage>88</epage><pages>82-88</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 – neither clogging nor flocculation, 2 – spontaneous film formation around room temperature, 3 – high conductivity. Nanosized Multilayered Graphene (NMG) is produced through a solvent-free procedure, using a grinding process in water. These NMG suspensions are used to elaborate conductive composite materials through physical blending with emulsifier-free latex. The nanocomposite microstructure exhibits a well-defined cellular architecture that highlights the formation of continuous paths of fillers throughout the material. The conductivity behavior of the nanocomposite material was efficiently described using a percolation model: the conductivity can be tuned by changing the NMG content and the latex size. A low percolation threshold (0.1vol%) was obtained and the electrical conductivity reached 217Sm−1 for 6 vol% NMG. Efficient film forming occurs at room temperature leading to continuous and deformable materials, which is adequate for printing on flexible and textile substrates. The applicability in electronics is demonstrated by the use of the nanocomposite material in replacement of copper wires in a LED setup.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2014.02.013</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7293-6591</orcidid><orcidid>https://orcid.org/0000-0002-7049-3897</orcidid><orcidid>https://orcid.org/0000-0003-2584-2119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2014-05, Vol.95, p.82-88 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00966122v1 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | A. Flexible composites A. Nanocomposites Applied sciences Architecture B. Electrical properties Chemical and Process Engineering Composites Electronics Engineering Sciences Exact sciences and technology Forms of application and semi-finished materials Graphene Latex Nanocomposite materials Nanostructure Polymer industry, paints, wood Resistivity Technology of polymers Textiles |
title | Tunable architecture for flexible and highly conductive graphene–polymer composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20architecture%20for%20flexible%20and%20highly%20conductive%20graphene%E2%80%93polymer%20composites&rft.jtitle=Composites%20science%20and%20technology&rft.au=No%C3%ABl,%20Am%C3%A9lie&rft.date=2014-05-01&rft.volume=95&rft.spage=82&rft.epage=88&rft.pages=82-88&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2014.02.013&rft_dat=%3Cproquest_hal_p%3E1671600001%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671600001&rft_id=info:pmid/&rft_els_id=S0266353814000591&rfr_iscdi=true |