Option pricing with discrete time jump processes

In this paper we propose new option pricing models based on class of models with jumps contained in the Lévy-type based models (NIG-Lévy, Schoutens, 2003, Merton-jump, Merton, 1976 and Duan based model, Duan et al., 2007). By combining these different classes of models with several volatility dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of economic dynamics & control 2013-12, Vol.37 (12), p.2417-2445
Hauptverfasser: Guégan, Dominique, Ielpo, Florian, Lalaharison, Hanjarivo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2445
container_issue 12
container_start_page 2417
container_title Journal of economic dynamics & control
container_volume 37
creator Guégan, Dominique
Ielpo, Florian
Lalaharison, Hanjarivo
description In this paper we propose new option pricing models based on class of models with jumps contained in the Lévy-type based models (NIG-Lévy, Schoutens, 2003, Merton-jump, Merton, 1976 and Duan based model, Duan et al., 2007). By combining these different classes of models with several volatility dynamics of the GARCH type, we aim at taking into account the dynamics of financial returns in a realistic way. The associated risk neutral dynamics of the time series models is obtained through two different specifications for the pricing kernel: we provide a characterization of the change in the probability measure using the Esscher transform and the Minimal Entropy Martingale Measure. We finally assess empirically the performance of this modelling approach, using a dataset of European options based on the S&P 500 and on the CAC 40 indices. Our results show that models involving jumps and a time varying volatility provide realistic pricing and hedging results for options with different kinds of time to maturities and moneyness. These results are supportive of the idea that a realistic time series model can provide realistic option prices making the approach developed here interesting to price options when option markets are illiquid or when such markets simply do not exist.
doi_str_mv 10.1016/j.jedc.2013.07.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00964950v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165188913001516</els_id><sourcerecordid>3130515041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-fbd8947c280681c1ae450fb376c0fd47296b5c4d0992fa1d46405a474626db23</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeAFz0kzib7kQUvpagVCr30viS7E7shHzWbVvz3bqh48CBzGJh53uGdl5BbCgkFKh7rpEZrkhRoloBMALIzMqO5VDGVLDsnswDxmOa5uiRX3tcAwFNOZwQ2-9H1XbQfnHHde_Tpxl1knTcDjhiNrsWoPrT7sO8Neo_-mlxURePx5qfPyfblebtcxevN69tysY4Nh2yMq9LmikmT5iByamiBjENVZlIYqCyTqRIlN8yCUmlVUMsEA14wyUQqbJlmc_JwOrsrGh3MtcXwpfvC6dViracZgBJMcTjSwN6f2GDy44B-1G14AJum6LA_eE2ZEopnLNSc3P1B6_4wdOGRQHHFBAguA5WeKDP03g9Y_TqgoKe8da2nvPWUtwYZzGRB9HQSYUjl6HDQ3jjsDFo3oBm17d1_8m-EeIXZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459460657</pqid></control><display><type>article</type><title>Option pricing with discrete time jump processes</title><source>Elsevier ScienceDirect Journals</source><creator>Guégan, Dominique ; Ielpo, Florian ; Lalaharison, Hanjarivo</creator><creatorcontrib>Guégan, Dominique ; Ielpo, Florian ; Lalaharison, Hanjarivo</creatorcontrib><description>In this paper we propose new option pricing models based on class of models with jumps contained in the Lévy-type based models (NIG-Lévy, Schoutens, 2003, Merton-jump, Merton, 1976 and Duan based model, Duan et al., 2007). By combining these different classes of models with several volatility dynamics of the GARCH type, we aim at taking into account the dynamics of financial returns in a realistic way. The associated risk neutral dynamics of the time series models is obtained through two different specifications for the pricing kernel: we provide a characterization of the change in the probability measure using the Esscher transform and the Minimal Entropy Martingale Measure. We finally assess empirically the performance of this modelling approach, using a dataset of European options based on the S&amp;P 500 and on the CAC 40 indices. Our results show that models involving jumps and a time varying volatility provide realistic pricing and hedging results for options with different kinds of time to maturities and moneyness. These results are supportive of the idea that a realistic time series model can provide realistic option prices making the approach developed here interesting to price options when option markets are illiquid or when such markets simply do not exist.</description><identifier>ISSN: 0165-1889</identifier><identifier>EISSN: 1879-1743</identifier><identifier>DOI: 10.1016/j.jedc.2013.07.003</identifier><identifier>CODEN: JEDCDH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>CAC 40 ; Eastern Europe ; Economic models ; Economic theory ; Economics and Finance ; Exponential affine stochastic discount factor ; GARCH models ; Humanities and Social Sciences ; Minimal Entropy Martingale Measure ; Option pricing ; Price models ; Rates of return ; S&amp;P 500 ; Securities prices ; Stochastic models ; Studies ; Time Jump processes ; Time series ; Volatility ; Western Europe</subject><ispartof>Journal of economic dynamics &amp; control, 2013-12, Vol.37 (12), p.2417-2445</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Dec 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-fbd8947c280681c1ae450fb376c0fd47296b5c4d0992fa1d46405a474626db23</citedby><cites>FETCH-LOGICAL-c503t-fbd8947c280681c1ae450fb376c0fd47296b5c4d0992fa1d46405a474626db23</cites><orcidid>0000-0003-4214-1429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165188913001516$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00964950$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guégan, Dominique</creatorcontrib><creatorcontrib>Ielpo, Florian</creatorcontrib><creatorcontrib>Lalaharison, Hanjarivo</creatorcontrib><title>Option pricing with discrete time jump processes</title><title>Journal of economic dynamics &amp; control</title><description>In this paper we propose new option pricing models based on class of models with jumps contained in the Lévy-type based models (NIG-Lévy, Schoutens, 2003, Merton-jump, Merton, 1976 and Duan based model, Duan et al., 2007). By combining these different classes of models with several volatility dynamics of the GARCH type, we aim at taking into account the dynamics of financial returns in a realistic way. The associated risk neutral dynamics of the time series models is obtained through two different specifications for the pricing kernel: we provide a characterization of the change in the probability measure using the Esscher transform and the Minimal Entropy Martingale Measure. We finally assess empirically the performance of this modelling approach, using a dataset of European options based on the S&amp;P 500 and on the CAC 40 indices. Our results show that models involving jumps and a time varying volatility provide realistic pricing and hedging results for options with different kinds of time to maturities and moneyness. These results are supportive of the idea that a realistic time series model can provide realistic option prices making the approach developed here interesting to price options when option markets are illiquid or when such markets simply do not exist.</description><subject>CAC 40</subject><subject>Eastern Europe</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Economics and Finance</subject><subject>Exponential affine stochastic discount factor</subject><subject>GARCH models</subject><subject>Humanities and Social Sciences</subject><subject>Minimal Entropy Martingale Measure</subject><subject>Option pricing</subject><subject>Price models</subject><subject>Rates of return</subject><subject>S&amp;P 500</subject><subject>Securities prices</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Time Jump processes</subject><subject>Time series</subject><subject>Volatility</subject><subject>Western Europe</subject><issn>0165-1889</issn><issn>1879-1743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeAFz0kzib7kQUvpagVCr30viS7E7shHzWbVvz3bqh48CBzGJh53uGdl5BbCgkFKh7rpEZrkhRoloBMALIzMqO5VDGVLDsnswDxmOa5uiRX3tcAwFNOZwQ2-9H1XbQfnHHde_Tpxl1knTcDjhiNrsWoPrT7sO8Neo_-mlxURePx5qfPyfblebtcxevN69tysY4Nh2yMq9LmikmT5iByamiBjENVZlIYqCyTqRIlN8yCUmlVUMsEA14wyUQqbJlmc_JwOrsrGh3MtcXwpfvC6dViracZgBJMcTjSwN6f2GDy44B-1G14AJum6LA_eE2ZEopnLNSc3P1B6_4wdOGRQHHFBAguA5WeKDP03g9Y_TqgoKe8da2nvPWUtwYZzGRB9HQSYUjl6HDQ3jjsDFo3oBm17d1_8m-EeIXZ</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Guégan, Dominique</creator><creator>Ielpo, Florian</creator><creator>Lalaharison, Hanjarivo</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0003-4214-1429</orcidid></search><sort><creationdate>20131201</creationdate><title>Option pricing with discrete time jump processes</title><author>Guégan, Dominique ; Ielpo, Florian ; Lalaharison, Hanjarivo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-fbd8947c280681c1ae450fb376c0fd47296b5c4d0992fa1d46405a474626db23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CAC 40</topic><topic>Eastern Europe</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Economics and Finance</topic><topic>Exponential affine stochastic discount factor</topic><topic>GARCH models</topic><topic>Humanities and Social Sciences</topic><topic>Minimal Entropy Martingale Measure</topic><topic>Option pricing</topic><topic>Price models</topic><topic>Rates of return</topic><topic>S&amp;P 500</topic><topic>Securities prices</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Time Jump processes</topic><topic>Time series</topic><topic>Volatility</topic><topic>Western Europe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guégan, Dominique</creatorcontrib><creatorcontrib>Ielpo, Florian</creatorcontrib><creatorcontrib>Lalaharison, Hanjarivo</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Journal of economic dynamics &amp; control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guégan, Dominique</au><au>Ielpo, Florian</au><au>Lalaharison, Hanjarivo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Option pricing with discrete time jump processes</atitle><jtitle>Journal of economic dynamics &amp; control</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>37</volume><issue>12</issue><spage>2417</spage><epage>2445</epage><pages>2417-2445</pages><issn>0165-1889</issn><eissn>1879-1743</eissn><coden>JEDCDH</coden><abstract>In this paper we propose new option pricing models based on class of models with jumps contained in the Lévy-type based models (NIG-Lévy, Schoutens, 2003, Merton-jump, Merton, 1976 and Duan based model, Duan et al., 2007). By combining these different classes of models with several volatility dynamics of the GARCH type, we aim at taking into account the dynamics of financial returns in a realistic way. The associated risk neutral dynamics of the time series models is obtained through two different specifications for the pricing kernel: we provide a characterization of the change in the probability measure using the Esscher transform and the Minimal Entropy Martingale Measure. We finally assess empirically the performance of this modelling approach, using a dataset of European options based on the S&amp;P 500 and on the CAC 40 indices. Our results show that models involving jumps and a time varying volatility provide realistic pricing and hedging results for options with different kinds of time to maturities and moneyness. These results are supportive of the idea that a realistic time series model can provide realistic option prices making the approach developed here interesting to price options when option markets are illiquid or when such markets simply do not exist.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jedc.2013.07.003</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-4214-1429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-1889
ispartof Journal of economic dynamics & control, 2013-12, Vol.37 (12), p.2417-2445
issn 0165-1889
1879-1743
language eng
recordid cdi_hal_primary_oai_HAL_hal_00964950v1
source Elsevier ScienceDirect Journals
subjects CAC 40
Eastern Europe
Economic models
Economic theory
Economics and Finance
Exponential affine stochastic discount factor
GARCH models
Humanities and Social Sciences
Minimal Entropy Martingale Measure
Option pricing
Price models
Rates of return
S&P 500
Securities prices
Stochastic models
Studies
Time Jump processes
Time series
Volatility
Western Europe
title Option pricing with discrete time jump processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Option%20pricing%20with%20discrete%20time%20jump%20processes&rft.jtitle=Journal%20of%20economic%20dynamics%20&%20control&rft.au=Gu%C3%A9gan,%20Dominique&rft.date=2013-12-01&rft.volume=37&rft.issue=12&rft.spage=2417&rft.epage=2445&rft.pages=2417-2445&rft.issn=0165-1889&rft.eissn=1879-1743&rft.coden=JEDCDH&rft_id=info:doi/10.1016/j.jedc.2013.07.003&rft_dat=%3Cproquest_hal_p%3E3130515041%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459460657&rft_id=info:pmid/&rft_els_id=S0165188913001516&rfr_iscdi=true