Option pricing with discrete time jump processes
In this paper we propose new option pricing models based on class of models with jumps contained in the Lévy-type based models (NIG-Lévy, Schoutens, 2003, Merton-jump, Merton, 1976 and Duan based model, Duan et al., 2007). By combining these different classes of models with several volatility dynami...
Gespeichert in:
Veröffentlicht in: | Journal of economic dynamics & control 2013-12, Vol.37 (12), p.2417-2445 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2445 |
---|---|
container_issue | 12 |
container_start_page | 2417 |
container_title | Journal of economic dynamics & control |
container_volume | 37 |
creator | Guégan, Dominique Ielpo, Florian Lalaharison, Hanjarivo |
description | In this paper we propose new option pricing models based on class of models with jumps contained in the Lévy-type based models (NIG-Lévy, Schoutens, 2003, Merton-jump, Merton, 1976 and Duan based model, Duan et al., 2007). By combining these different classes of models with several volatility dynamics of the GARCH type, we aim at taking into account the dynamics of financial returns in a realistic way. The associated risk neutral dynamics of the time series models is obtained through two different specifications for the pricing kernel: we provide a characterization of the change in the probability measure using the Esscher transform and the Minimal Entropy Martingale Measure. We finally assess empirically the performance of this modelling approach, using a dataset of European options based on the S&P 500 and on the CAC 40 indices. Our results show that models involving jumps and a time varying volatility provide realistic pricing and hedging results for options with different kinds of time to maturities and moneyness. These results are supportive of the idea that a realistic time series model can provide realistic option prices making the approach developed here interesting to price options when option markets are illiquid or when such markets simply do not exist. |
doi_str_mv | 10.1016/j.jedc.2013.07.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00964950v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165188913001516</els_id><sourcerecordid>3130515041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-fbd8947c280681c1ae450fb376c0fd47296b5c4d0992fa1d46405a474626db23</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeAFz0kzib7kQUvpagVCr30viS7E7shHzWbVvz3bqh48CBzGJh53uGdl5BbCgkFKh7rpEZrkhRoloBMALIzMqO5VDGVLDsnswDxmOa5uiRX3tcAwFNOZwQ2-9H1XbQfnHHde_Tpxl1knTcDjhiNrsWoPrT7sO8Neo_-mlxURePx5qfPyfblebtcxevN69tysY4Nh2yMq9LmikmT5iByamiBjENVZlIYqCyTqRIlN8yCUmlVUMsEA14wyUQqbJlmc_JwOrsrGh3MtcXwpfvC6dViracZgBJMcTjSwN6f2GDy44B-1G14AJum6LA_eE2ZEopnLNSc3P1B6_4wdOGRQHHFBAguA5WeKDP03g9Y_TqgoKe8da2nvPWUtwYZzGRB9HQSYUjl6HDQ3jjsDFo3oBm17d1_8m-EeIXZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459460657</pqid></control><display><type>article</type><title>Option pricing with discrete time jump processes</title><source>Elsevier ScienceDirect Journals</source><creator>Guégan, Dominique ; Ielpo, Florian ; Lalaharison, Hanjarivo</creator><creatorcontrib>Guégan, Dominique ; Ielpo, Florian ; Lalaharison, Hanjarivo</creatorcontrib><description>In this paper we propose new option pricing models based on class of models with jumps contained in the Lévy-type based models (NIG-Lévy, Schoutens, 2003, Merton-jump, Merton, 1976 and Duan based model, Duan et al., 2007). By combining these different classes of models with several volatility dynamics of the GARCH type, we aim at taking into account the dynamics of financial returns in a realistic way. The associated risk neutral dynamics of the time series models is obtained through two different specifications for the pricing kernel: we provide a characterization of the change in the probability measure using the Esscher transform and the Minimal Entropy Martingale Measure. We finally assess empirically the performance of this modelling approach, using a dataset of European options based on the S&P 500 and on the CAC 40 indices. Our results show that models involving jumps and a time varying volatility provide realistic pricing and hedging results for options with different kinds of time to maturities and moneyness. These results are supportive of the idea that a realistic time series model can provide realistic option prices making the approach developed here interesting to price options when option markets are illiquid or when such markets simply do not exist.</description><identifier>ISSN: 0165-1889</identifier><identifier>EISSN: 1879-1743</identifier><identifier>DOI: 10.1016/j.jedc.2013.07.003</identifier><identifier>CODEN: JEDCDH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>CAC 40 ; Eastern Europe ; Economic models ; Economic theory ; Economics and Finance ; Exponential affine stochastic discount factor ; GARCH models ; Humanities and Social Sciences ; Minimal Entropy Martingale Measure ; Option pricing ; Price models ; Rates of return ; S&P 500 ; Securities prices ; Stochastic models ; Studies ; Time Jump processes ; Time series ; Volatility ; Western Europe</subject><ispartof>Journal of economic dynamics & control, 2013-12, Vol.37 (12), p.2417-2445</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Dec 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-fbd8947c280681c1ae450fb376c0fd47296b5c4d0992fa1d46405a474626db23</citedby><cites>FETCH-LOGICAL-c503t-fbd8947c280681c1ae450fb376c0fd47296b5c4d0992fa1d46405a474626db23</cites><orcidid>0000-0003-4214-1429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165188913001516$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00964950$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guégan, Dominique</creatorcontrib><creatorcontrib>Ielpo, Florian</creatorcontrib><creatorcontrib>Lalaharison, Hanjarivo</creatorcontrib><title>Option pricing with discrete time jump processes</title><title>Journal of economic dynamics & control</title><description>In this paper we propose new option pricing models based on class of models with jumps contained in the Lévy-type based models (NIG-Lévy, Schoutens, 2003, Merton-jump, Merton, 1976 and Duan based model, Duan et al., 2007). By combining these different classes of models with several volatility dynamics of the GARCH type, we aim at taking into account the dynamics of financial returns in a realistic way. The associated risk neutral dynamics of the time series models is obtained through two different specifications for the pricing kernel: we provide a characterization of the change in the probability measure using the Esscher transform and the Minimal Entropy Martingale Measure. We finally assess empirically the performance of this modelling approach, using a dataset of European options based on the S&P 500 and on the CAC 40 indices. Our results show that models involving jumps and a time varying volatility provide realistic pricing and hedging results for options with different kinds of time to maturities and moneyness. These results are supportive of the idea that a realistic time series model can provide realistic option prices making the approach developed here interesting to price options when option markets are illiquid or when such markets simply do not exist.</description><subject>CAC 40</subject><subject>Eastern Europe</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Economics and Finance</subject><subject>Exponential affine stochastic discount factor</subject><subject>GARCH models</subject><subject>Humanities and Social Sciences</subject><subject>Minimal Entropy Martingale Measure</subject><subject>Option pricing</subject><subject>Price models</subject><subject>Rates of return</subject><subject>S&P 500</subject><subject>Securities prices</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Time Jump processes</subject><subject>Time series</subject><subject>Volatility</subject><subject>Western Europe</subject><issn>0165-1889</issn><issn>1879-1743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeAFz0kzib7kQUvpagVCr30viS7E7shHzWbVvz3bqh48CBzGJh53uGdl5BbCgkFKh7rpEZrkhRoloBMALIzMqO5VDGVLDsnswDxmOa5uiRX3tcAwFNOZwQ2-9H1XbQfnHHde_Tpxl1knTcDjhiNrsWoPrT7sO8Neo_-mlxURePx5qfPyfblebtcxevN69tysY4Nh2yMq9LmikmT5iByamiBjENVZlIYqCyTqRIlN8yCUmlVUMsEA14wyUQqbJlmc_JwOrsrGh3MtcXwpfvC6dViracZgBJMcTjSwN6f2GDy44B-1G14AJum6LA_eE2ZEopnLNSc3P1B6_4wdOGRQHHFBAguA5WeKDP03g9Y_TqgoKe8da2nvPWUtwYZzGRB9HQSYUjl6HDQ3jjsDFo3oBm17d1_8m-EeIXZ</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Guégan, Dominique</creator><creator>Ielpo, Florian</creator><creator>Lalaharison, Hanjarivo</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0003-4214-1429</orcidid></search><sort><creationdate>20131201</creationdate><title>Option pricing with discrete time jump processes</title><author>Guégan, Dominique ; Ielpo, Florian ; Lalaharison, Hanjarivo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-fbd8947c280681c1ae450fb376c0fd47296b5c4d0992fa1d46405a474626db23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CAC 40</topic><topic>Eastern Europe</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Economics and Finance</topic><topic>Exponential affine stochastic discount factor</topic><topic>GARCH models</topic><topic>Humanities and Social Sciences</topic><topic>Minimal Entropy Martingale Measure</topic><topic>Option pricing</topic><topic>Price models</topic><topic>Rates of return</topic><topic>S&P 500</topic><topic>Securities prices</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Time Jump processes</topic><topic>Time series</topic><topic>Volatility</topic><topic>Western Europe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guégan, Dominique</creatorcontrib><creatorcontrib>Ielpo, Florian</creatorcontrib><creatorcontrib>Lalaharison, Hanjarivo</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Journal of economic dynamics & control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guégan, Dominique</au><au>Ielpo, Florian</au><au>Lalaharison, Hanjarivo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Option pricing with discrete time jump processes</atitle><jtitle>Journal of economic dynamics & control</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>37</volume><issue>12</issue><spage>2417</spage><epage>2445</epage><pages>2417-2445</pages><issn>0165-1889</issn><eissn>1879-1743</eissn><coden>JEDCDH</coden><abstract>In this paper we propose new option pricing models based on class of models with jumps contained in the Lévy-type based models (NIG-Lévy, Schoutens, 2003, Merton-jump, Merton, 1976 and Duan based model, Duan et al., 2007). By combining these different classes of models with several volatility dynamics of the GARCH type, we aim at taking into account the dynamics of financial returns in a realistic way. The associated risk neutral dynamics of the time series models is obtained through two different specifications for the pricing kernel: we provide a characterization of the change in the probability measure using the Esscher transform and the Minimal Entropy Martingale Measure. We finally assess empirically the performance of this modelling approach, using a dataset of European options based on the S&P 500 and on the CAC 40 indices. Our results show that models involving jumps and a time varying volatility provide realistic pricing and hedging results for options with different kinds of time to maturities and moneyness. These results are supportive of the idea that a realistic time series model can provide realistic option prices making the approach developed here interesting to price options when option markets are illiquid or when such markets simply do not exist.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jedc.2013.07.003</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-4214-1429</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1889 |
ispartof | Journal of economic dynamics & control, 2013-12, Vol.37 (12), p.2417-2445 |
issn | 0165-1889 1879-1743 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00964950v1 |
source | Elsevier ScienceDirect Journals |
subjects | CAC 40 Eastern Europe Economic models Economic theory Economics and Finance Exponential affine stochastic discount factor GARCH models Humanities and Social Sciences Minimal Entropy Martingale Measure Option pricing Price models Rates of return S&P 500 Securities prices Stochastic models Studies Time Jump processes Time series Volatility Western Europe |
title | Option pricing with discrete time jump processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Option%20pricing%20with%20discrete%20time%20jump%20processes&rft.jtitle=Journal%20of%20economic%20dynamics%20&%20control&rft.au=Gu%C3%A9gan,%20Dominique&rft.date=2013-12-01&rft.volume=37&rft.issue=12&rft.spage=2417&rft.epage=2445&rft.pages=2417-2445&rft.issn=0165-1889&rft.eissn=1879-1743&rft.coden=JEDCDH&rft_id=info:doi/10.1016/j.jedc.2013.07.003&rft_dat=%3Cproquest_hal_p%3E3130515041%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459460657&rft_id=info:pmid/&rft_els_id=S0165188913001516&rfr_iscdi=true |