A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry
Arc behavior in 3-Phase AC plasma technology remains poorly explored. This system noticeably differs from the classical DC plasma torches and aims to overcome certain limitations, such as efficiency, equipment cost and reliability. A MHD model of a 3-Phase AC plasma torch was recently developed at M...
Gespeichert in:
Veröffentlicht in: | Plasma chemistry and plasma processing 2014-07, Vol.34 (4), p.975-996 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 996 |
---|---|
container_issue | 4 |
container_start_page | 975 |
container_title | Plasma chemistry and plasma processing |
container_volume | 34 |
creator | Rehmet, Christophe Fabry, Frédéric Rohani, Vandad Cauneau, François Fulcheri, Laurent |
description | Arc behavior in 3-Phase AC plasma technology remains poorly explored. This system noticeably differs from the classical DC plasma torches and aims to overcome certain limitations, such as efficiency, equipment cost and reliability. A MHD model of a 3-Phase AC plasma torch was recently developed at Mines-ParisTech. The model does not include the electrodes in the computational domain. In parallel, experiments were conducted using a high-speed video camera shooting 100,000 frames per second. In this paper, the comparison between MHD modeling and experimental results shows that the arc behavior is in line with the results from the MHD model. Particularly, the strong influences of both the electrode jets and Lorentz forces on the arc motion are confirmed. However, some differences between experimental and numerical electrical waveforms are observed and particularly in the current–voltage phase shift. A new model was then developed by integrating the electrodes into the computational domain and adjusting the electrode tip geometry. With this simulation, we were able to reproduce the phase shift, power and voltage values with a good accuracy showing the strong influence of electrode tip geometry on the 3-Phase arc plasma discharge. |
doi_str_mv | 10.1007/s11090-014-9536-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00960102v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559713096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-bed9e52170509337562fedfbfee7e1434ecbcaa10723725c3432b25e16cebe783</originalsourceid><addsrcrecordid>eNp9kU1v1DAURS1EJYaWH8DuLWER8EccT9iFYehUmqpVNawtx_PSSeXYwU6A7vnheBTEkpUt65wrXV9C3jL6gVGqPibGaE0LysqilqIq-AuyYlLxYl2vq5dkRXm-l4KXr8jrlJ4ozZZQK_K7gU0YRhP7FDx8xuknoofb3Re4DUd0vX8E44-w_TVi7Af0k3HwgGl2U4LegwFR3J9MQmg20EQL986kwcAhRHv6BDe-czN6ixA6mE4IW4d2ijkZDv0I1xgGnOLzFbnojEv45u95Sb593R42u2J_d32zafaFLWs2FS0ea5ScKSppLYSSFe_w2LUdokJWihJta41hVHGhuLQi9225RFZZbFGtxSV5v-SejNNj7mPisw6m17tmr89vlNZV_hn-g2X23cKOMXyfMU166JNF54zHMCfNpKwVE1nIKFtQG0NKEbt_2Yzq8zp6WUfndfR5Hc2zwxcnZdY_YtRPYY4-t_-P9Ad3E5Cy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559713096</pqid></control><display><type>article</type><title>A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rehmet, Christophe ; Fabry, Frédéric ; Rohani, Vandad ; Cauneau, François ; Fulcheri, Laurent</creator><creatorcontrib>Rehmet, Christophe ; Fabry, Frédéric ; Rohani, Vandad ; Cauneau, François ; Fulcheri, Laurent</creatorcontrib><description>Arc behavior in 3-Phase AC plasma technology remains poorly explored. This system noticeably differs from the classical DC plasma torches and aims to overcome certain limitations, such as efficiency, equipment cost and reliability. A MHD model of a 3-Phase AC plasma torch was recently developed at Mines-ParisTech. The model does not include the electrodes in the computational domain. In parallel, experiments were conducted using a high-speed video camera shooting 100,000 frames per second. In this paper, the comparison between MHD modeling and experimental results shows that the arc behavior is in line with the results from the MHD model. Particularly, the strong influences of both the electrode jets and Lorentz forces on the arc motion are confirmed. However, some differences between experimental and numerical electrical waveforms are observed and particularly in the current–voltage phase shift. A new model was then developed by integrating the electrodes into the computational domain and adjusting the electrode tip geometry. With this simulation, we were able to reproduce the phase shift, power and voltage values with a good accuracy showing the strong influence of electrode tip geometry on the 3-Phase arc plasma discharge.</description><identifier>ISSN: 0272-4324</identifier><identifier>EISSN: 1572-8986</identifier><identifier>DOI: 10.1007/s11090-014-9536-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alternating current ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Classical Mechanics ; Computation ; domain_spi.energ ; Electrodes ; Engineering Sciences ; Inorganic Chemistry ; Magnetohydrodynamics ; Mathematical models ; Mechanical Engineering ; MHD ; Original Paper ; Phase shift ; Plasma torches</subject><ispartof>Plasma chemistry and plasma processing, 2014-07, Vol.34 (4), p.975-996</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-bed9e52170509337562fedfbfee7e1434ecbcaa10723725c3432b25e16cebe783</citedby><cites>FETCH-LOGICAL-c491t-bed9e52170509337562fedfbfee7e1434ecbcaa10723725c3432b25e16cebe783</cites><orcidid>0000-0002-3843-431X ; 0000-0002-5646-8863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11090-014-9536-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11090-014-9536-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-00960102$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rehmet, Christophe</creatorcontrib><creatorcontrib>Fabry, Frédéric</creatorcontrib><creatorcontrib>Rohani, Vandad</creatorcontrib><creatorcontrib>Cauneau, François</creatorcontrib><creatorcontrib>Fulcheri, Laurent</creatorcontrib><title>A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry</title><title>Plasma chemistry and plasma processing</title><addtitle>Plasma Chem Plasma Process</addtitle><description>Arc behavior in 3-Phase AC plasma technology remains poorly explored. This system noticeably differs from the classical DC plasma torches and aims to overcome certain limitations, such as efficiency, equipment cost and reliability. A MHD model of a 3-Phase AC plasma torch was recently developed at Mines-ParisTech. The model does not include the electrodes in the computational domain. In parallel, experiments were conducted using a high-speed video camera shooting 100,000 frames per second. In this paper, the comparison between MHD modeling and experimental results shows that the arc behavior is in line with the results from the MHD model. Particularly, the strong influences of both the electrode jets and Lorentz forces on the arc motion are confirmed. However, some differences between experimental and numerical electrical waveforms are observed and particularly in the current–voltage phase shift. A new model was then developed by integrating the electrodes into the computational domain and adjusting the electrode tip geometry. With this simulation, we were able to reproduce the phase shift, power and voltage values with a good accuracy showing the strong influence of electrode tip geometry on the 3-Phase arc plasma discharge.</description><subject>Alternating current</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Computation</subject><subject>domain_spi.energ</subject><subject>Electrodes</subject><subject>Engineering Sciences</subject><subject>Inorganic Chemistry</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>MHD</subject><subject>Original Paper</subject><subject>Phase shift</subject><subject>Plasma torches</subject><issn>0272-4324</issn><issn>1572-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAURS1EJYaWH8DuLWER8EccT9iFYehUmqpVNawtx_PSSeXYwU6A7vnheBTEkpUt65wrXV9C3jL6gVGqPibGaE0LysqilqIq-AuyYlLxYl2vq5dkRXm-l4KXr8jrlJ4ozZZQK_K7gU0YRhP7FDx8xuknoofb3Re4DUd0vX8E44-w_TVi7Af0k3HwgGl2U4LegwFR3J9MQmg20EQL986kwcAhRHv6BDe-czN6ixA6mE4IW4d2ijkZDv0I1xgGnOLzFbnojEv45u95Sb593R42u2J_d32zafaFLWs2FS0ea5ScKSppLYSSFe_w2LUdokJWihJta41hVHGhuLQi9225RFZZbFGtxSV5v-SejNNj7mPisw6m17tmr89vlNZV_hn-g2X23cKOMXyfMU166JNF54zHMCfNpKwVE1nIKFtQG0NKEbt_2Yzq8zp6WUfndfR5Hc2zwxcnZdY_YtRPYY4-t_-P9Ad3E5Cy</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Rehmet, Christophe</creator><creator>Fabry, Frédéric</creator><creator>Rohani, Vandad</creator><creator>Cauneau, François</creator><creator>Fulcheri, Laurent</creator><general>Springer US</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3843-431X</orcidid><orcidid>https://orcid.org/0000-0002-5646-8863</orcidid></search><sort><creationdate>20140701</creationdate><title>A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry</title><author>Rehmet, Christophe ; Fabry, Frédéric ; Rohani, Vandad ; Cauneau, François ; Fulcheri, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-bed9e52170509337562fedfbfee7e1434ecbcaa10723725c3432b25e16cebe783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternating current</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Computation</topic><topic>domain_spi.energ</topic><topic>Electrodes</topic><topic>Engineering Sciences</topic><topic>Inorganic Chemistry</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>MHD</topic><topic>Original Paper</topic><topic>Phase shift</topic><topic>Plasma torches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehmet, Christophe</creatorcontrib><creatorcontrib>Fabry, Frédéric</creatorcontrib><creatorcontrib>Rohani, Vandad</creatorcontrib><creatorcontrib>Cauneau, François</creatorcontrib><creatorcontrib>Fulcheri, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Plasma chemistry and plasma processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehmet, Christophe</au><au>Fabry, Frédéric</au><au>Rohani, Vandad</au><au>Cauneau, François</au><au>Fulcheri, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry</atitle><jtitle>Plasma chemistry and plasma processing</jtitle><stitle>Plasma Chem Plasma Process</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>34</volume><issue>4</issue><spage>975</spage><epage>996</epage><pages>975-996</pages><issn>0272-4324</issn><eissn>1572-8986</eissn><abstract>Arc behavior in 3-Phase AC plasma technology remains poorly explored. This system noticeably differs from the classical DC plasma torches and aims to overcome certain limitations, such as efficiency, equipment cost and reliability. A MHD model of a 3-Phase AC plasma torch was recently developed at Mines-ParisTech. The model does not include the electrodes in the computational domain. In parallel, experiments were conducted using a high-speed video camera shooting 100,000 frames per second. In this paper, the comparison between MHD modeling and experimental results shows that the arc behavior is in line with the results from the MHD model. Particularly, the strong influences of both the electrode jets and Lorentz forces on the arc motion are confirmed. However, some differences between experimental and numerical electrical waveforms are observed and particularly in the current–voltage phase shift. A new model was then developed by integrating the electrodes into the computational domain and adjusting the electrode tip geometry. With this simulation, we were able to reproduce the phase shift, power and voltage values with a good accuracy showing the strong influence of electrode tip geometry on the 3-Phase arc plasma discharge.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11090-014-9536-2</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-3843-431X</orcidid><orcidid>https://orcid.org/0000-0002-5646-8863</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4324 |
ispartof | Plasma chemistry and plasma processing, 2014-07, Vol.34 (4), p.975-996 |
issn | 0272-4324 1572-8986 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00960102v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alternating current Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Classical Mechanics Computation domain_spi.energ Electrodes Engineering Sciences Inorganic Chemistry Magnetohydrodynamics Mathematical models Mechanical Engineering MHD Original Paper Phase shift Plasma torches |
title | A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20Between%20MHD%20Modeling%20and%20Experimental%20Results%20in%20a%203-Phase%20AC%20Arc%20Plasma%20Torch:%20Influence%20of%20the%20Electrode%20Tip%20Geometry&rft.jtitle=Plasma%20chemistry%20and%20plasma%20processing&rft.au=Rehmet,%20Christophe&rft.date=2014-07-01&rft.volume=34&rft.issue=4&rft.spage=975&rft.epage=996&rft.pages=975-996&rft.issn=0272-4324&rft.eissn=1572-8986&rft_id=info:doi/10.1007/s11090-014-9536-2&rft_dat=%3Cproquest_hal_p%3E1559713096%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559713096&rft_id=info:pmid/&rfr_iscdi=true |