A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry

Arc behavior in 3-Phase AC plasma technology remains poorly explored. This system noticeably differs from the classical DC plasma torches and aims to overcome certain limitations, such as efficiency, equipment cost and reliability. A MHD model of a 3-Phase AC plasma torch was recently developed at M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma chemistry and plasma processing 2014-07, Vol.34 (4), p.975-996
Hauptverfasser: Rehmet, Christophe, Fabry, Frédéric, Rohani, Vandad, Cauneau, François, Fulcheri, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 996
container_issue 4
container_start_page 975
container_title Plasma chemistry and plasma processing
container_volume 34
creator Rehmet, Christophe
Fabry, Frédéric
Rohani, Vandad
Cauneau, François
Fulcheri, Laurent
description Arc behavior in 3-Phase AC plasma technology remains poorly explored. This system noticeably differs from the classical DC plasma torches and aims to overcome certain limitations, such as efficiency, equipment cost and reliability. A MHD model of a 3-Phase AC plasma torch was recently developed at Mines-ParisTech. The model does not include the electrodes in the computational domain. In parallel, experiments were conducted using a high-speed video camera shooting 100,000 frames per second. In this paper, the comparison between MHD modeling and experimental results shows that the arc behavior is in line with the results from the MHD model. Particularly, the strong influences of both the electrode jets and Lorentz forces on the arc motion are confirmed. However, some differences between experimental and numerical electrical waveforms are observed and particularly in the current–voltage phase shift. A new model was then developed by integrating the electrodes into the computational domain and adjusting the electrode tip geometry. With this simulation, we were able to reproduce the phase shift, power and voltage values with a good accuracy showing the strong influence of electrode tip geometry on the 3-Phase arc plasma discharge.
doi_str_mv 10.1007/s11090-014-9536-2
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00960102v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559713096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-bed9e52170509337562fedfbfee7e1434ecbcaa10723725c3432b25e16cebe783</originalsourceid><addsrcrecordid>eNp9kU1v1DAURS1EJYaWH8DuLWER8EccT9iFYehUmqpVNawtx_PSSeXYwU6A7vnheBTEkpUt65wrXV9C3jL6gVGqPibGaE0LysqilqIq-AuyYlLxYl2vq5dkRXm-l4KXr8jrlJ4ozZZQK_K7gU0YRhP7FDx8xuknoofb3Re4DUd0vX8E44-w_TVi7Af0k3HwgGl2U4LegwFR3J9MQmg20EQL986kwcAhRHv6BDe-czN6ixA6mE4IW4d2ijkZDv0I1xgGnOLzFbnojEv45u95Sb593R42u2J_d32zafaFLWs2FS0ea5ScKSppLYSSFe_w2LUdokJWihJta41hVHGhuLQi9225RFZZbFGtxSV5v-SejNNj7mPisw6m17tmr89vlNZV_hn-g2X23cKOMXyfMU166JNF54zHMCfNpKwVE1nIKFtQG0NKEbt_2Yzq8zp6WUfndfR5Hc2zwxcnZdY_YtRPYY4-t_-P9Ad3E5Cy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559713096</pqid></control><display><type>article</type><title>A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rehmet, Christophe ; Fabry, Frédéric ; Rohani, Vandad ; Cauneau, François ; Fulcheri, Laurent</creator><creatorcontrib>Rehmet, Christophe ; Fabry, Frédéric ; Rohani, Vandad ; Cauneau, François ; Fulcheri, Laurent</creatorcontrib><description>Arc behavior in 3-Phase AC plasma technology remains poorly explored. This system noticeably differs from the classical DC plasma torches and aims to overcome certain limitations, such as efficiency, equipment cost and reliability. A MHD model of a 3-Phase AC plasma torch was recently developed at Mines-ParisTech. The model does not include the electrodes in the computational domain. In parallel, experiments were conducted using a high-speed video camera shooting 100,000 frames per second. In this paper, the comparison between MHD modeling and experimental results shows that the arc behavior is in line with the results from the MHD model. Particularly, the strong influences of both the electrode jets and Lorentz forces on the arc motion are confirmed. However, some differences between experimental and numerical electrical waveforms are observed and particularly in the current–voltage phase shift. A new model was then developed by integrating the electrodes into the computational domain and adjusting the electrode tip geometry. With this simulation, we were able to reproduce the phase shift, power and voltage values with a good accuracy showing the strong influence of electrode tip geometry on the 3-Phase arc plasma discharge.</description><identifier>ISSN: 0272-4324</identifier><identifier>EISSN: 1572-8986</identifier><identifier>DOI: 10.1007/s11090-014-9536-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alternating current ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Classical Mechanics ; Computation ; domain_spi.energ ; Electrodes ; Engineering Sciences ; Inorganic Chemistry ; Magnetohydrodynamics ; Mathematical models ; Mechanical Engineering ; MHD ; Original Paper ; Phase shift ; Plasma torches</subject><ispartof>Plasma chemistry and plasma processing, 2014-07, Vol.34 (4), p.975-996</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-bed9e52170509337562fedfbfee7e1434ecbcaa10723725c3432b25e16cebe783</citedby><cites>FETCH-LOGICAL-c491t-bed9e52170509337562fedfbfee7e1434ecbcaa10723725c3432b25e16cebe783</cites><orcidid>0000-0002-3843-431X ; 0000-0002-5646-8863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11090-014-9536-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11090-014-9536-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-00960102$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rehmet, Christophe</creatorcontrib><creatorcontrib>Fabry, Frédéric</creatorcontrib><creatorcontrib>Rohani, Vandad</creatorcontrib><creatorcontrib>Cauneau, François</creatorcontrib><creatorcontrib>Fulcheri, Laurent</creatorcontrib><title>A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry</title><title>Plasma chemistry and plasma processing</title><addtitle>Plasma Chem Plasma Process</addtitle><description>Arc behavior in 3-Phase AC plasma technology remains poorly explored. This system noticeably differs from the classical DC plasma torches and aims to overcome certain limitations, such as efficiency, equipment cost and reliability. A MHD model of a 3-Phase AC plasma torch was recently developed at Mines-ParisTech. The model does not include the electrodes in the computational domain. In parallel, experiments were conducted using a high-speed video camera shooting 100,000 frames per second. In this paper, the comparison between MHD modeling and experimental results shows that the arc behavior is in line with the results from the MHD model. Particularly, the strong influences of both the electrode jets and Lorentz forces on the arc motion are confirmed. However, some differences between experimental and numerical electrical waveforms are observed and particularly in the current–voltage phase shift. A new model was then developed by integrating the electrodes into the computational domain and adjusting the electrode tip geometry. With this simulation, we were able to reproduce the phase shift, power and voltage values with a good accuracy showing the strong influence of electrode tip geometry on the 3-Phase arc plasma discharge.</description><subject>Alternating current</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Computation</subject><subject>domain_spi.energ</subject><subject>Electrodes</subject><subject>Engineering Sciences</subject><subject>Inorganic Chemistry</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>MHD</subject><subject>Original Paper</subject><subject>Phase shift</subject><subject>Plasma torches</subject><issn>0272-4324</issn><issn>1572-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAURS1EJYaWH8DuLWER8EccT9iFYehUmqpVNawtx_PSSeXYwU6A7vnheBTEkpUt65wrXV9C3jL6gVGqPibGaE0LysqilqIq-AuyYlLxYl2vq5dkRXm-l4KXr8jrlJ4ozZZQK_K7gU0YRhP7FDx8xuknoofb3Re4DUd0vX8E44-w_TVi7Af0k3HwgGl2U4LegwFR3J9MQmg20EQL986kwcAhRHv6BDe-czN6ixA6mE4IW4d2ijkZDv0I1xgGnOLzFbnojEv45u95Sb593R42u2J_d32zafaFLWs2FS0ea5ScKSppLYSSFe_w2LUdokJWihJta41hVHGhuLQi9225RFZZbFGtxSV5v-SejNNj7mPisw6m17tmr89vlNZV_hn-g2X23cKOMXyfMU166JNF54zHMCfNpKwVE1nIKFtQG0NKEbt_2Yzq8zp6WUfndfR5Hc2zwxcnZdY_YtRPYY4-t_-P9Ad3E5Cy</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Rehmet, Christophe</creator><creator>Fabry, Frédéric</creator><creator>Rohani, Vandad</creator><creator>Cauneau, François</creator><creator>Fulcheri, Laurent</creator><general>Springer US</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3843-431X</orcidid><orcidid>https://orcid.org/0000-0002-5646-8863</orcidid></search><sort><creationdate>20140701</creationdate><title>A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry</title><author>Rehmet, Christophe ; Fabry, Frédéric ; Rohani, Vandad ; Cauneau, François ; Fulcheri, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-bed9e52170509337562fedfbfee7e1434ecbcaa10723725c3432b25e16cebe783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternating current</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Computation</topic><topic>domain_spi.energ</topic><topic>Electrodes</topic><topic>Engineering Sciences</topic><topic>Inorganic Chemistry</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>MHD</topic><topic>Original Paper</topic><topic>Phase shift</topic><topic>Plasma torches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehmet, Christophe</creatorcontrib><creatorcontrib>Fabry, Frédéric</creatorcontrib><creatorcontrib>Rohani, Vandad</creatorcontrib><creatorcontrib>Cauneau, François</creatorcontrib><creatorcontrib>Fulcheri, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Plasma chemistry and plasma processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehmet, Christophe</au><au>Fabry, Frédéric</au><au>Rohani, Vandad</au><au>Cauneau, François</au><au>Fulcheri, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry</atitle><jtitle>Plasma chemistry and plasma processing</jtitle><stitle>Plasma Chem Plasma Process</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>34</volume><issue>4</issue><spage>975</spage><epage>996</epage><pages>975-996</pages><issn>0272-4324</issn><eissn>1572-8986</eissn><abstract>Arc behavior in 3-Phase AC plasma technology remains poorly explored. This system noticeably differs from the classical DC plasma torches and aims to overcome certain limitations, such as efficiency, equipment cost and reliability. A MHD model of a 3-Phase AC plasma torch was recently developed at Mines-ParisTech. The model does not include the electrodes in the computational domain. In parallel, experiments were conducted using a high-speed video camera shooting 100,000 frames per second. In this paper, the comparison between MHD modeling and experimental results shows that the arc behavior is in line with the results from the MHD model. Particularly, the strong influences of both the electrode jets and Lorentz forces on the arc motion are confirmed. However, some differences between experimental and numerical electrical waveforms are observed and particularly in the current–voltage phase shift. A new model was then developed by integrating the electrodes into the computational domain and adjusting the electrode tip geometry. With this simulation, we were able to reproduce the phase shift, power and voltage values with a good accuracy showing the strong influence of electrode tip geometry on the 3-Phase arc plasma discharge.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11090-014-9536-2</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-3843-431X</orcidid><orcidid>https://orcid.org/0000-0002-5646-8863</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-4324
ispartof Plasma chemistry and plasma processing, 2014-07, Vol.34 (4), p.975-996
issn 0272-4324
1572-8986
language eng
recordid cdi_hal_primary_oai_HAL_hal_00960102v1
source SpringerLink Journals - AutoHoldings
subjects Alternating current
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Classical Mechanics
Computation
domain_spi.energ
Electrodes
Engineering Sciences
Inorganic Chemistry
Magnetohydrodynamics
Mathematical models
Mechanical Engineering
MHD
Original Paper
Phase shift
Plasma torches
title A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20Between%20MHD%20Modeling%20and%20Experimental%20Results%20in%20a%203-Phase%20AC%20Arc%20Plasma%20Torch:%20Influence%20of%20the%20Electrode%20Tip%20Geometry&rft.jtitle=Plasma%20chemistry%20and%20plasma%20processing&rft.au=Rehmet,%20Christophe&rft.date=2014-07-01&rft.volume=34&rft.issue=4&rft.spage=975&rft.epage=996&rft.pages=975-996&rft.issn=0272-4324&rft.eissn=1572-8986&rft_id=info:doi/10.1007/s11090-014-9536-2&rft_dat=%3Cproquest_hal_p%3E1559713096%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559713096&rft_id=info:pmid/&rfr_iscdi=true