Clique versus independent set
Yannakakis’ Clique versus Independent Set problem (CL–IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn), and addresses the problem of find...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2014-08, Vol.40, p.73-92 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | |
container_start_page | 73 |
container_title | European journal of combinatorics |
container_volume | 40 |
creator | Bousquet, N. Lagoutte, A. Thomassé, S. |
description | Yannakakis’ Clique versus Independent Set problem (CL–IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cH for which we find a O(ncH) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cH is of order O(|H|log|H|) resulting from Vapnik–Chervonenkis dimension, and on the other side, ck is a tower function, due to an application of the regularity lemma.
One of the main reason why Yannakakis’ CL–IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon–Saks–Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator. |
doi_str_mv | 10.1016/j.ejc.2014.02.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00958647v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669814000249</els_id><sourcerecordid>1671622462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-834ece91d4e315f4f2aa92c62af6d88ef3215d2cb94bd63ca6997a94ab71c4933</originalsourceid><addsrcrecordid>eNp9UMFKxDAQDaLguvoBHoQ96qE1k6Rpg6dlWV1hwYueQzaZYkq3XZPugn9vSsWjl5lheG_mvUfILdAcKMjHJsfG5oyCyCnLKeVnZAZUFZlSJZyTGYU0S6mqS3IVY0MpQMH5jNytWv91xMUJQzzGhe8cHjCVblhEHK7JRW3aiDe_fU4-ntfvq022fXt5XS23mRW0HLKKC7SowAnkUNSiZsYoZiUztXRVhTVnUDhmd0rsnOTWyKTKKGF2JVihOJ-Th-nup2n1Ifi9Cd-6N15vlls97miyUklRniBh7yfsIfRJeRz03keLbWs67I9RgyxBMiYkS1CYoDb0MQas_24D1WNsutEpNj3GpilLX0YpTxMHk9-Tx6Cj9dhZdD6gHbTr_T_sH5SHcto</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671622462</pqid></control><display><type>article</type><title>Clique versus independent set</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bousquet, N. ; Lagoutte, A. ; Thomassé, S.</creator><creatorcontrib>Bousquet, N. ; Lagoutte, A. ; Thomassé, S.</creatorcontrib><description>Yannakakis’ Clique versus Independent Set problem (CL–IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cH for which we find a O(ncH) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cH is of order O(|H|log|H|) resulting from Vapnik–Chervonenkis dimension, and on the other side, ck is a tower function, due to an application of the regularity lemma.
One of the main reason why Yannakakis’ CL–IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon–Saks–Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1016/j.ejc.2014.02.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Combinatorial analysis ; Complement ; Computer Science ; Discrete Mathematics ; Equivalence ; Functions (mathematics) ; Graphs ; Mathematical analysis ; Polynomials ; Regularity</subject><ispartof>European journal of combinatorics, 2014-08, Vol.40, p.73-92</ispartof><rights>2014 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-834ece91d4e315f4f2aa92c62af6d88ef3215d2cb94bd63ca6997a94ab71c4933</citedby><cites>FETCH-LOGICAL-c407t-834ece91d4e315f4f2aa92c62af6d88ef3215d2cb94bd63ca6997a94ab71c4933</cites><orcidid>0000-0003-0170-0503 ; 0009-0009-9351-1099 ; 0000-0002-7090-1790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejc.2014.02.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00958647$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bousquet, N.</creatorcontrib><creatorcontrib>Lagoutte, A.</creatorcontrib><creatorcontrib>Thomassé, S.</creatorcontrib><title>Clique versus independent set</title><title>European journal of combinatorics</title><description>Yannakakis’ Clique versus Independent Set problem (CL–IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cH for which we find a O(ncH) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cH is of order O(|H|log|H|) resulting from Vapnik–Chervonenkis dimension, and on the other side, ck is a tower function, due to an application of the regularity lemma.
One of the main reason why Yannakakis’ CL–IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon–Saks–Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator.</description><subject>Combinatorial analysis</subject><subject>Complement</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Equivalence</subject><subject>Functions (mathematics)</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Regularity</subject><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKxDAQDaLguvoBHoQ96qE1k6Rpg6dlWV1hwYueQzaZYkq3XZPugn9vSsWjl5lheG_mvUfILdAcKMjHJsfG5oyCyCnLKeVnZAZUFZlSJZyTGYU0S6mqS3IVY0MpQMH5jNytWv91xMUJQzzGhe8cHjCVblhEHK7JRW3aiDe_fU4-ntfvq022fXt5XS23mRW0HLKKC7SowAnkUNSiZsYoZiUztXRVhTVnUDhmd0rsnOTWyKTKKGF2JVihOJ-Th-nup2n1Ifi9Cd-6N15vlls97miyUklRniBh7yfsIfRJeRz03keLbWs67I9RgyxBMiYkS1CYoDb0MQas_24D1WNsutEpNj3GpilLX0YpTxMHk9-Tx6Cj9dhZdD6gHbTr_T_sH5SHcto</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Bousquet, N.</creator><creator>Lagoutte, A.</creator><creator>Thomassé, S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0170-0503</orcidid><orcidid>https://orcid.org/0009-0009-9351-1099</orcidid><orcidid>https://orcid.org/0000-0002-7090-1790</orcidid></search><sort><creationdate>20140801</creationdate><title>Clique versus independent set</title><author>Bousquet, N. ; Lagoutte, A. ; Thomassé, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-834ece91d4e315f4f2aa92c62af6d88ef3215d2cb94bd63ca6997a94ab71c4933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Combinatorial analysis</topic><topic>Complement</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Equivalence</topic><topic>Functions (mathematics)</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bousquet, N.</creatorcontrib><creatorcontrib>Lagoutte, A.</creatorcontrib><creatorcontrib>Thomassé, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bousquet, N.</au><au>Lagoutte, A.</au><au>Thomassé, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clique versus independent set</atitle><jtitle>European journal of combinatorics</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>40</volume><spage>73</spage><epage>92</epage><pages>73-92</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>Yannakakis’ Clique versus Independent Set problem (CL–IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cH for which we find a O(ncH) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cH is of order O(|H|log|H|) resulting from Vapnik–Chervonenkis dimension, and on the other side, ck is a tower function, due to an application of the regularity lemma.
One of the main reason why Yannakakis’ CL–IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon–Saks–Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ejc.2014.02.003</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0170-0503</orcidid><orcidid>https://orcid.org/0009-0009-9351-1099</orcidid><orcidid>https://orcid.org/0000-0002-7090-1790</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-6698 |
ispartof | European journal of combinatorics, 2014-08, Vol.40, p.73-92 |
issn | 0195-6698 1095-9971 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00958647v1 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Combinatorial analysis Complement Computer Science Discrete Mathematics Equivalence Functions (mathematics) Graphs Mathematical analysis Polynomials Regularity |
title | Clique versus independent set |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A21%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clique%20versus%20independent%20set&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Bousquet,%20N.&rft.date=2014-08-01&rft.volume=40&rft.spage=73&rft.epage=92&rft.pages=73-92&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1016/j.ejc.2014.02.003&rft_dat=%3Cproquest_hal_p%3E1671622462%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671622462&rft_id=info:pmid/&rft_els_id=S0195669814000249&rfr_iscdi=true |