Clique versus independent set

Yannakakis’ Clique versus Independent Set problem (CL–IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn), and addresses the problem of find...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2014-08, Vol.40, p.73-92
Hauptverfasser: Bousquet, N., Lagoutte, A., Thomassé, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 73
container_title European journal of combinatorics
container_volume 40
creator Bousquet, N.
Lagoutte, A.
Thomassé, S.
description Yannakakis’ Clique versus Independent Set problem (CL–IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cH for which we find a O(ncH) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cH is of order O(|H|log|H|) resulting from Vapnik–Chervonenkis dimension, and on the other side, ck is a tower function, due to an application of the regularity lemma. One of the main reason why Yannakakis’ CL–IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon–Saks–Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator.
doi_str_mv 10.1016/j.ejc.2014.02.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00958647v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669814000249</els_id><sourcerecordid>1671622462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-834ece91d4e315f4f2aa92c62af6d88ef3215d2cb94bd63ca6997a94ab71c4933</originalsourceid><addsrcrecordid>eNp9UMFKxDAQDaLguvoBHoQ96qE1k6Rpg6dlWV1hwYueQzaZYkq3XZPugn9vSsWjl5lheG_mvUfILdAcKMjHJsfG5oyCyCnLKeVnZAZUFZlSJZyTGYU0S6mqS3IVY0MpQMH5jNytWv91xMUJQzzGhe8cHjCVblhEHK7JRW3aiDe_fU4-ntfvq022fXt5XS23mRW0HLKKC7SowAnkUNSiZsYoZiUztXRVhTVnUDhmd0rsnOTWyKTKKGF2JVihOJ-Th-nup2n1Ifi9Cd-6N15vlls97miyUklRniBh7yfsIfRJeRz03keLbWs67I9RgyxBMiYkS1CYoDb0MQas_24D1WNsutEpNj3GpilLX0YpTxMHk9-Tx6Cj9dhZdD6gHbTr_T_sH5SHcto</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671622462</pqid></control><display><type>article</type><title>Clique versus independent set</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bousquet, N. ; Lagoutte, A. ; Thomassé, S.</creator><creatorcontrib>Bousquet, N. ; Lagoutte, A. ; Thomassé, S.</creatorcontrib><description>Yannakakis’ Clique versus Independent Set problem (CL–IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cH for which we find a O(ncH) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cH is of order O(|H|log|H|) resulting from Vapnik–Chervonenkis dimension, and on the other side, ck is a tower function, due to an application of the regularity lemma. One of the main reason why Yannakakis’ CL–IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon–Saks–Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1016/j.ejc.2014.02.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Combinatorial analysis ; Complement ; Computer Science ; Discrete Mathematics ; Equivalence ; Functions (mathematics) ; Graphs ; Mathematical analysis ; Polynomials ; Regularity</subject><ispartof>European journal of combinatorics, 2014-08, Vol.40, p.73-92</ispartof><rights>2014 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-834ece91d4e315f4f2aa92c62af6d88ef3215d2cb94bd63ca6997a94ab71c4933</citedby><cites>FETCH-LOGICAL-c407t-834ece91d4e315f4f2aa92c62af6d88ef3215d2cb94bd63ca6997a94ab71c4933</cites><orcidid>0000-0003-0170-0503 ; 0009-0009-9351-1099 ; 0000-0002-7090-1790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejc.2014.02.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00958647$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bousquet, N.</creatorcontrib><creatorcontrib>Lagoutte, A.</creatorcontrib><creatorcontrib>Thomassé, S.</creatorcontrib><title>Clique versus independent set</title><title>European journal of combinatorics</title><description>Yannakakis’ Clique versus Independent Set problem (CL–IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cH for which we find a O(ncH) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cH is of order O(|H|log|H|) resulting from Vapnik–Chervonenkis dimension, and on the other side, ck is a tower function, due to an application of the regularity lemma. One of the main reason why Yannakakis’ CL–IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon–Saks–Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator.</description><subject>Combinatorial analysis</subject><subject>Complement</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Equivalence</subject><subject>Functions (mathematics)</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Regularity</subject><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKxDAQDaLguvoBHoQ96qE1k6Rpg6dlWV1hwYueQzaZYkq3XZPugn9vSsWjl5lheG_mvUfILdAcKMjHJsfG5oyCyCnLKeVnZAZUFZlSJZyTGYU0S6mqS3IVY0MpQMH5jNytWv91xMUJQzzGhe8cHjCVblhEHK7JRW3aiDe_fU4-ntfvq022fXt5XS23mRW0HLKKC7SowAnkUNSiZsYoZiUztXRVhTVnUDhmd0rsnOTWyKTKKGF2JVihOJ-Th-nup2n1Ifi9Cd-6N15vlls97miyUklRniBh7yfsIfRJeRz03keLbWs67I9RgyxBMiYkS1CYoDb0MQas_24D1WNsutEpNj3GpilLX0YpTxMHk9-Tx6Cj9dhZdD6gHbTr_T_sH5SHcto</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Bousquet, N.</creator><creator>Lagoutte, A.</creator><creator>Thomassé, S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0170-0503</orcidid><orcidid>https://orcid.org/0009-0009-9351-1099</orcidid><orcidid>https://orcid.org/0000-0002-7090-1790</orcidid></search><sort><creationdate>20140801</creationdate><title>Clique versus independent set</title><author>Bousquet, N. ; Lagoutte, A. ; Thomassé, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-834ece91d4e315f4f2aa92c62af6d88ef3215d2cb94bd63ca6997a94ab71c4933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Combinatorial analysis</topic><topic>Complement</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Equivalence</topic><topic>Functions (mathematics)</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bousquet, N.</creatorcontrib><creatorcontrib>Lagoutte, A.</creatorcontrib><creatorcontrib>Thomassé, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bousquet, N.</au><au>Lagoutte, A.</au><au>Thomassé, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clique versus independent set</atitle><jtitle>European journal of combinatorics</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>40</volume><spage>73</spage><epage>92</epage><pages>73-92</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>Yannakakis’ Clique versus Independent Set problem (CL–IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cH for which we find a O(ncH) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cH is of order O(|H|log|H|) resulting from Vapnik–Chervonenkis dimension, and on the other side, ck is a tower function, due to an application of the regularity lemma. One of the main reason why Yannakakis’ CL–IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon–Saks–Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ejc.2014.02.003</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0170-0503</orcidid><orcidid>https://orcid.org/0009-0009-9351-1099</orcidid><orcidid>https://orcid.org/0000-0002-7090-1790</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-6698
ispartof European journal of combinatorics, 2014-08, Vol.40, p.73-92
issn 0195-6698
1095-9971
language eng
recordid cdi_hal_primary_oai_HAL_hal_00958647v1
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Combinatorial analysis
Complement
Computer Science
Discrete Mathematics
Equivalence
Functions (mathematics)
Graphs
Mathematical analysis
Polynomials
Regularity
title Clique versus independent set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A21%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clique%20versus%20independent%20set&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Bousquet,%20N.&rft.date=2014-08-01&rft.volume=40&rft.spage=73&rft.epage=92&rft.pages=73-92&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1016/j.ejc.2014.02.003&rft_dat=%3Cproquest_hal_p%3E1671622462%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671622462&rft_id=info:pmid/&rft_els_id=S0195669814000249&rfr_iscdi=true