Particle image velocimetry with optical flow

All optical flow technique based on the use of dynamic programming has been applied to Particle Image Velocimetry thus yielding a significant increase in the accuracy and spatial resolution of the velocity field. Results are presented for calibrated synthetic sequences of images and for sequences of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 1998-08, Vol.25 (3), p.177-189
Hauptverfasser: QUENOT, G. M, PAKLEZA, J, KOWALEWSKI, T. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue 3
container_start_page 177
container_title Experiments in fluids
container_volume 25
creator QUENOT, G. M
PAKLEZA, J
KOWALEWSKI, T. A
description All optical flow technique based on the use of dynamic programming has been applied to Particle Image Velocimetry thus yielding a significant increase in the accuracy and spatial resolution of the velocity field. Results are presented for calibrated synthetic sequences of images and for sequences of real images taken for a thermally driven flow of water with a freezing front. The accuracy remains better than 0.5 pixel/frame for tested two-image sequences and 0.2 pixel/frame for four-image sequences, even with a 10 percent added noise level and allowing 10 percent of particles to appear or disappear. A velocity vector is obtained for every pixel of the image. (Author)
doi_str_mv 10.1007/s003480050222
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00953823v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26726250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-98247c1d472061ea15eda0fb1a4a9ded22f42527956ff6572ba8e18674f362443</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMoWKtH73sQQXB1MvncYxG1QkEPeg7pbmJX0qYm25b-e7e0FDwNzDzvy_AQck3hgQKoxwzAuAYQgIgnZEA5w5JSyk_JABSykmvJz8lFzj8AVFSgB-T-w6aurYMr2rn9dsXahVi3c9elbbFpu1kRl_3ZhsKHuLkkZ96G7K4Oc0i-Xp4_n8bl5P317Wk0KWsmdVdWGrmqacMVgqTOUuEaC35KLbdV4xpEz1GgqoT0XgqFU6sd1VJxzyRyzobkbt87s8EsU_9Z2ppoWzMeTcxuB1AJppGtac_e7tllir8rlzszb3PtQrALF1fZoFQoUUAPlnuwTjHn5PyxmYLZ-TP__PX8zaHY5l6AT3ZRt_kYQiZ0pSn7A8hEbHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26726250</pqid></control><display><type>article</type><title>Particle image velocimetry with optical flow</title><source>SpringerNature Journals</source><creator>QUENOT, G. M ; PAKLEZA, J ; KOWALEWSKI, T. A</creator><creatorcontrib>QUENOT, G. M ; PAKLEZA, J ; KOWALEWSKI, T. A</creatorcontrib><description>All optical flow technique based on the use of dynamic programming has been applied to Particle Image Velocimetry thus yielding a significant increase in the accuracy and spatial resolution of the velocity field. Results are presented for calibrated synthetic sequences of images and for sequences of real images taken for a thermally driven flow of water with a freezing front. The accuracy remains better than 0.5 pixel/frame for tested two-image sequences and 0.2 pixel/frame for four-image sequences, even with a 10 percent added noise level and allowing 10 percent of particles to appear or disappear. A velocity vector is obtained for every pixel of the image. (Author)</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s003480050222</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Computer Science ; Computer Vision and Pattern Recognition ; Exact sciences and technology ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Mechanics ; Physics</subject><ispartof>Experiments in fluids, 1998-08, Vol.25 (3), p.177-189</ispartof><rights>1998 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-98247c1d472061ea15eda0fb1a4a9ded22f42527956ff6572ba8e18674f362443</citedby><orcidid>0000-0003-2117-247X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2358981$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00953823$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>QUENOT, G. M</creatorcontrib><creatorcontrib>PAKLEZA, J</creatorcontrib><creatorcontrib>KOWALEWSKI, T. A</creatorcontrib><title>Particle image velocimetry with optical flow</title><title>Experiments in fluids</title><description>All optical flow technique based on the use of dynamic programming has been applied to Particle Image Velocimetry thus yielding a significant increase in the accuracy and spatial resolution of the velocity field. Results are presented for calibrated synthetic sequences of images and for sequences of real images taken for a thermally driven flow of water with a freezing front. The accuracy remains better than 0.5 pixel/frame for tested two-image sequences and 0.2 pixel/frame for four-image sequences, even with a 10 percent added noise level and allowing 10 percent of particles to appear or disappear. A velocity vector is obtained for every pixel of the image. (Author)</description><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Mechanics</subject><subject>Physics</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LAzEQhoMoWKtH73sQQXB1MvncYxG1QkEPeg7pbmJX0qYm25b-e7e0FDwNzDzvy_AQck3hgQKoxwzAuAYQgIgnZEA5w5JSyk_JABSykmvJz8lFzj8AVFSgB-T-w6aurYMr2rn9dsXahVi3c9elbbFpu1kRl_3ZhsKHuLkkZ96G7K4Oc0i-Xp4_n8bl5P317Wk0KWsmdVdWGrmqacMVgqTOUuEaC35KLbdV4xpEz1GgqoT0XgqFU6sd1VJxzyRyzobkbt87s8EsU_9Z2ppoWzMeTcxuB1AJppGtac_e7tllir8rlzszb3PtQrALF1fZoFQoUUAPlnuwTjHn5PyxmYLZ-TP__PX8zaHY5l6AT3ZRt_kYQiZ0pSn7A8hEbHA</recordid><startdate>19980801</startdate><enddate>19980801</enddate><creator>QUENOT, G. M</creator><creator>PAKLEZA, J</creator><creator>KOWALEWSKI, T. A</creator><general>Springer</general><general>Springer Verlag (Germany)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2117-247X</orcidid></search><sort><creationdate>19980801</creationdate><title>Particle image velocimetry with optical flow</title><author>QUENOT, G. M ; PAKLEZA, J ; KOWALEWSKI, T. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-98247c1d472061ea15eda0fb1a4a9ded22f42527956ff6572ba8e18674f362443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Mechanics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>QUENOT, G. M</creatorcontrib><creatorcontrib>PAKLEZA, J</creatorcontrib><creatorcontrib>KOWALEWSKI, T. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>QUENOT, G. M</au><au>PAKLEZA, J</au><au>KOWALEWSKI, T. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle image velocimetry with optical flow</atitle><jtitle>Experiments in fluids</jtitle><date>1998-08-01</date><risdate>1998</risdate><volume>25</volume><issue>3</issue><spage>177</spage><epage>189</epage><pages>177-189</pages><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>All optical flow technique based on the use of dynamic programming has been applied to Particle Image Velocimetry thus yielding a significant increase in the accuracy and spatial resolution of the velocity field. Results are presented for calibrated synthetic sequences of images and for sequences of real images taken for a thermally driven flow of water with a freezing front. The accuracy remains better than 0.5 pixel/frame for tested two-image sequences and 0.2 pixel/frame for four-image sequences, even with a 10 percent added noise level and allowing 10 percent of particles to appear or disappear. A velocity vector is obtained for every pixel of the image. (Author)</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s003480050222</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2117-247X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 1998-08, Vol.25 (3), p.177-189
issn 0723-4864
1432-1114
language eng
recordid cdi_hal_primary_oai_HAL_hal_00953823v1
source SpringerNature Journals
subjects Computer Science
Computer Vision and Pattern Recognition
Exact sciences and technology
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Instrumentation for fluid dynamics
Mechanics
Physics
title Particle image velocimetry with optical flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20image%20velocimetry%20with%20optical%20flow&rft.jtitle=Experiments%20in%20fluids&rft.au=QUENOT,%20G.%20M&rft.date=1998-08-01&rft.volume=25&rft.issue=3&rft.spage=177&rft.epage=189&rft.pages=177-189&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s003480050222&rft_dat=%3Cproquest_hal_p%3E26726250%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26726250&rft_id=info:pmid/&rfr_iscdi=true