Atmospheric response to sea surface temperature mesoscale structures
Recent studies have revealed that strong sea surface temperature (SST) fronts, on the scale of a Western Boundary Current, significantly affect not just the Marine Boundary Layer but the entire troposphere. This has aroused renewed interest in air‐sea interactions. The present study investigates the...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2013-09, Vol.118 (17), p.9611-9621 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9621 |
---|---|
container_issue | 17 |
container_start_page | 9611 |
container_title | Journal of Geophysical Research |
container_volume | 118 |
creator | Lambaerts, J. Lapeyre, G. Plougonven, R. Klein, P. |
description | Recent studies have revealed that strong sea surface temperature (SST) fronts, on the scale of a Western Boundary Current, significantly affect not just the Marine Boundary Layer but the entire troposphere. This has aroused renewed interest in air‐sea interactions. The present study investigates the atmospheric response to fixed SST anomalies associated with mesoscale oceanic eddies and submesoscale filaments, using idealized simulations. Our main result is that in weak wind conditions, the vertical velocity in the planetary boundary layer (PBL) is linearly proportional to the SST Laplacian. This is established by a quantitative analysis in the spatial space as well as in the spectral space. Comparing the responses to two different SST fields shows that vertical velocities are much more intense when the submesoscales are more energetic. These results hold for different configurations of the atmospheric large‐scale state and for different PBL parameterizations. Surface winds play the role of low‐pass filter and reduce the response at the smaller scales. To our knowledge, this study is the first to clearly reveal the high impact of oceanic submesoscales on the atmospheric boundary layer at midlatitudes, as well as the direct link between the vertical velocity and the SST Laplacian.
Key Points
Atmospheric flow above a complex SST field is studied in idealized simulations
The vertical velocity field is directly linked to the Laplacian of the SST
The SST at sub-mesoscales have a significant impact on the atmospheric PBL |
doi_str_mv | 10.1002/jgrd.50769 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00952145v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642248086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5059-22b86e7ba3c75ea3a774522cf44400dcf85875febfdaab3cf6b10c040af2fa273</originalsourceid><addsrcrecordid>eNqFkV2L1DAUhoMouIx74y8oiKBC13wnvRxmdFYpCqLs4k04zZy4HdtpTVp1_72tXefCC81NksNzHk7yEvKY0QtGKX95-BL3F4oaXdwjZ5zpIrdFoe-fzub6ITlP6UCnZamQSp6R7Xpou9TfYKx9FjH13TFhNnRZQsjSGAP46YptjxGGMWLWYuqShwazNMTRz7X0iDwI0CQ8v9tX5NPrVx83l3n5fvdmsy5zr6gqcs4rq9FUILxRCAKMkYpzH6SUlO59sMoaFbAKe4BK-KArRj2VFAIPwI1YkeeL9wYa18e6hXjrOqjd5bp0c43SQnEm1Xc2sc8Wto_dtxHT4No6eWwaOGI3Jse05FxaavX_UVlwLbiVs_XJX-ihG-NxevQkFFYoRotZ-GKhfOxSihhOwzLq5qjcHJX7HdUEP71TwvyvIcLR1-nUwY2lSk9xrQhbuB91g7f_MLq3uw_bP-586anTgD9PPRC_Om2EUe7q3c5dba_LspAb91n8AoYRsT8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638351096</pqid></control><display><type>article</type><title>Atmospheric response to sea surface temperature mesoscale structures</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Lambaerts, J. ; Lapeyre, G. ; Plougonven, R. ; Klein, P.</creator><creatorcontrib>Lambaerts, J. ; Lapeyre, G. ; Plougonven, R. ; Klein, P.</creatorcontrib><description>Recent studies have revealed that strong sea surface temperature (SST) fronts, on the scale of a Western Boundary Current, significantly affect not just the Marine Boundary Layer but the entire troposphere. This has aroused renewed interest in air‐sea interactions. The present study investigates the atmospheric response to fixed SST anomalies associated with mesoscale oceanic eddies and submesoscale filaments, using idealized simulations. Our main result is that in weak wind conditions, the vertical velocity in the planetary boundary layer (PBL) is linearly proportional to the SST Laplacian. This is established by a quantitative analysis in the spatial space as well as in the spectral space. Comparing the responses to two different SST fields shows that vertical velocities are much more intense when the submesoscales are more energetic. These results hold for different configurations of the atmospheric large‐scale state and for different PBL parameterizations. Surface winds play the role of low‐pass filter and reduce the response at the smaller scales. To our knowledge, this study is the first to clearly reveal the high impact of oceanic submesoscales on the atmospheric boundary layer at midlatitudes, as well as the direct link between the vertical velocity and the SST Laplacian.
Key Points
Atmospheric flow above a complex SST field is studied in idealized simulations
The vertical velocity field is directly linked to the Laplacian of the SST
The SST at sub-mesoscales have a significant impact on the atmospheric PBL</description><identifier>ISSN: 2169-897X</identifier><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2169-8996</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1002/jgrd.50769</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>air-sea interactions ; Atmospheric boundary layer ; Atmospherics ; boundary layer ; Boundary layers ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Filaments ; Geophysics ; Marine ; Meteorology ; Oceanic eddies ; Oceanography ; Parametrization ; Quantitative analysis ; Sciences of the Universe ; Sea surface temperature ; Simulation ; Spatial analysis ; Surface wind ; Troposphere ; Wind</subject><ispartof>Journal of Geophysical Research, 2013-09, Vol.118 (17), p.9611-9621</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5059-22b86e7ba3c75ea3a774522cf44400dcf85875febfdaab3cf6b10c040af2fa273</citedby><cites>FETCH-LOGICAL-c5059-22b86e7ba3c75ea3a774522cf44400dcf85875febfdaab3cf6b10c040af2fa273</cites><orcidid>0000-0001-8187-8971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgrd.50769$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgrd.50769$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27805680$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00952145$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lambaerts, J.</creatorcontrib><creatorcontrib>Lapeyre, G.</creatorcontrib><creatorcontrib>Plougonven, R.</creatorcontrib><creatorcontrib>Klein, P.</creatorcontrib><title>Atmospheric response to sea surface temperature mesoscale structures</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>Recent studies have revealed that strong sea surface temperature (SST) fronts, on the scale of a Western Boundary Current, significantly affect not just the Marine Boundary Layer but the entire troposphere. This has aroused renewed interest in air‐sea interactions. The present study investigates the atmospheric response to fixed SST anomalies associated with mesoscale oceanic eddies and submesoscale filaments, using idealized simulations. Our main result is that in weak wind conditions, the vertical velocity in the planetary boundary layer (PBL) is linearly proportional to the SST Laplacian. This is established by a quantitative analysis in the spatial space as well as in the spectral space. Comparing the responses to two different SST fields shows that vertical velocities are much more intense when the submesoscales are more energetic. These results hold for different configurations of the atmospheric large‐scale state and for different PBL parameterizations. Surface winds play the role of low‐pass filter and reduce the response at the smaller scales. To our knowledge, this study is the first to clearly reveal the high impact of oceanic submesoscales on the atmospheric boundary layer at midlatitudes, as well as the direct link between the vertical velocity and the SST Laplacian.
Key Points
Atmospheric flow above a complex SST field is studied in idealized simulations
The vertical velocity field is directly linked to the Laplacian of the SST
The SST at sub-mesoscales have a significant impact on the atmospheric PBL</description><subject>air-sea interactions</subject><subject>Atmospheric boundary layer</subject><subject>Atmospherics</subject><subject>boundary layer</subject><subject>Boundary layers</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Filaments</subject><subject>Geophysics</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Oceanic eddies</subject><subject>Oceanography</subject><subject>Parametrization</subject><subject>Quantitative analysis</subject><subject>Sciences of the Universe</subject><subject>Sea surface temperature</subject><subject>Simulation</subject><subject>Spatial analysis</subject><subject>Surface wind</subject><subject>Troposphere</subject><subject>Wind</subject><issn>2169-897X</issn><issn>0148-0227</issn><issn>2169-8996</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkV2L1DAUhoMouIx74y8oiKBC13wnvRxmdFYpCqLs4k04zZy4HdtpTVp1_72tXefCC81NksNzHk7yEvKY0QtGKX95-BL3F4oaXdwjZ5zpIrdFoe-fzub6ITlP6UCnZamQSp6R7Xpou9TfYKx9FjH13TFhNnRZQsjSGAP46YptjxGGMWLWYuqShwazNMTRz7X0iDwI0CQ8v9tX5NPrVx83l3n5fvdmsy5zr6gqcs4rq9FUILxRCAKMkYpzH6SUlO59sMoaFbAKe4BK-KArRj2VFAIPwI1YkeeL9wYa18e6hXjrOqjd5bp0c43SQnEm1Xc2sc8Wto_dtxHT4No6eWwaOGI3Jse05FxaavX_UVlwLbiVs_XJX-ihG-NxevQkFFYoRotZ-GKhfOxSihhOwzLq5qjcHJX7HdUEP71TwvyvIcLR1-nUwY2lSk9xrQhbuB91g7f_MLq3uw_bP-586anTgD9PPRC_Om2EUe7q3c5dba_LspAb91n8AoYRsT8</recordid><startdate>20130916</startdate><enddate>20130916</enddate><creator>Lambaerts, J.</creator><creator>Lapeyre, G.</creator><creator>Plougonven, R.</creator><creator>Klein, P.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7TN</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8187-8971</orcidid></search><sort><creationdate>20130916</creationdate><title>Atmospheric response to sea surface temperature mesoscale structures</title><author>Lambaerts, J. ; Lapeyre, G. ; Plougonven, R. ; Klein, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5059-22b86e7ba3c75ea3a774522cf44400dcf85875febfdaab3cf6b10c040af2fa273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>air-sea interactions</topic><topic>Atmospheric boundary layer</topic><topic>Atmospherics</topic><topic>boundary layer</topic><topic>Boundary layers</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Filaments</topic><topic>Geophysics</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Oceanic eddies</topic><topic>Oceanography</topic><topic>Parametrization</topic><topic>Quantitative analysis</topic><topic>Sciences of the Universe</topic><topic>Sea surface temperature</topic><topic>Simulation</topic><topic>Spatial analysis</topic><topic>Surface wind</topic><topic>Troposphere</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambaerts, J.</creatorcontrib><creatorcontrib>Lapeyre, G.</creatorcontrib><creatorcontrib>Plougonven, R.</creatorcontrib><creatorcontrib>Klein, P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Oceanic Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambaerts, J.</au><au>Lapeyre, G.</au><au>Plougonven, R.</au><au>Klein, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric response to sea surface temperature mesoscale structures</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2013-09-16</date><risdate>2013</risdate><volume>118</volume><issue>17</issue><spage>9611</spage><epage>9621</epage><pages>9611-9621</pages><issn>2169-897X</issn><issn>0148-0227</issn><eissn>2169-8996</eissn><eissn>2156-2202</eissn><abstract>Recent studies have revealed that strong sea surface temperature (SST) fronts, on the scale of a Western Boundary Current, significantly affect not just the Marine Boundary Layer but the entire troposphere. This has aroused renewed interest in air‐sea interactions. The present study investigates the atmospheric response to fixed SST anomalies associated with mesoscale oceanic eddies and submesoscale filaments, using idealized simulations. Our main result is that in weak wind conditions, the vertical velocity in the planetary boundary layer (PBL) is linearly proportional to the SST Laplacian. This is established by a quantitative analysis in the spatial space as well as in the spectral space. Comparing the responses to two different SST fields shows that vertical velocities are much more intense when the submesoscales are more energetic. These results hold for different configurations of the atmospheric large‐scale state and for different PBL parameterizations. Surface winds play the role of low‐pass filter and reduce the response at the smaller scales. To our knowledge, this study is the first to clearly reveal the high impact of oceanic submesoscales on the atmospheric boundary layer at midlatitudes, as well as the direct link between the vertical velocity and the SST Laplacian.
Key Points
Atmospheric flow above a complex SST field is studied in idealized simulations
The vertical velocity field is directly linked to the Laplacian of the SST
The SST at sub-mesoscales have a significant impact on the atmospheric PBL</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgrd.50769</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8187-8971</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of Geophysical Research, 2013-09, Vol.118 (17), p.9611-9621 |
issn | 2169-897X 0148-0227 2169-8996 2156-2202 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00952145v1 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection |
subjects | air-sea interactions Atmospheric boundary layer Atmospherics boundary layer Boundary layers Earth Sciences Earth, ocean, space Exact sciences and technology External geophysics Filaments Geophysics Marine Meteorology Oceanic eddies Oceanography Parametrization Quantitative analysis Sciences of the Universe Sea surface temperature Simulation Spatial analysis Surface wind Troposphere Wind |
title | Atmospheric response to sea surface temperature mesoscale structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20response%20to%20sea%20surface%20temperature%20mesoscale%20structures&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Lambaerts,%20J.&rft.date=2013-09-16&rft.volume=118&rft.issue=17&rft.spage=9611&rft.epage=9621&rft.pages=9611-9621&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/jgrd.50769&rft_dat=%3Cproquest_hal_p%3E1642248086%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638351096&rft_id=info:pmid/&rfr_iscdi=true |