Glioma‐derived galectin‐1 regulates innate and adaptive antitumor immunity

Galectin‐1 is a glycan‐binding protein, which is involved in the aggressiveness of glioblastoma (GBM) in part by stimulating angiogenesis. In different cancer models, galectin‐1 has also been demonstrated to play a pivotal role in tumor‐mediated immune evasion especially by modulating cells of the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 2014-02, Vol.134 (4), p.873-884
Hauptverfasser: Verschuere, Tina, Toelen, Jaan, Maes, Wim, Poirier, Françoise, Boon, Louis, Tousseyn, Thomas, Mathivet, Thomas, Gerhardt, Holger, Mathieu, Veronique, Kiss, Robert, Lefranc, Florence, Van Gool, Stefaan W., Vleeschouwer, Steven De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 884
container_issue 4
container_start_page 873
container_title International journal of cancer
container_volume 134
creator Verschuere, Tina
Toelen, Jaan
Maes, Wim
Poirier, Françoise
Boon, Louis
Tousseyn, Thomas
Mathivet, Thomas
Gerhardt, Holger
Mathieu, Veronique
Kiss, Robert
Lefranc, Florence
Van Gool, Stefaan W.
Vleeschouwer, Steven De
description Galectin‐1 is a glycan‐binding protein, which is involved in the aggressiveness of glioblastoma (GBM) in part by stimulating angiogenesis. In different cancer models, galectin‐1 has also been demonstrated to play a pivotal role in tumor‐mediated immune evasion especially by modulating cells of the adaptive immune system. It is yet unknown whether the absence or presence of galectin‐1 within the glioma microenvironment also causes qualitative or quantitative differences in innate and/or adaptive antitumor immune responses. All experiments were performed in the orthotopic GL261 mouse high‐grade glioma model. Stable galectin‐1 knockdown was achieved via transduction of parental GL261 tumor cells with a lentiviral vector encoding a galectin‐1‐targeting miRNA. We demonstrated that the absence of tumor‐derived but not of host‐derived galectin‐1 significantly prolonged the survival of glioma‐bearing mice as such and in combination with dendritic cell (DC)‐based immunotherapy. Both flow cytometric and pathological analysis revealed that the silencing of glioma‐derived galectin‐1 significantly decreased the amount of brain‐infiltrating macrophages and myeloid‐derived suppressor cells (MDSC) in tumor‐bearing mice. Additionally, we revealed a pro‐angiogenic role for galectin‐1 within the glioma microenvironment. The data provided in this study reveal a pivotal role for glioma‐derived galectin‐1 in the regulation of myeloid cell accumulation within the glioma microenvironment, the most abundant immune cell population in high‐grade gliomas. Furthermore, the prolonged survival observed in untreated and DC‐vaccinated glioma‐bearing mice upon the silencing of tumor‐derived galectin‐1 strongly suggest that the in vivo targeting of tumor‐derived galectin‐1 might offer a promising and realistic adjuvant treatment modality in patients diagnosed with GBM. What's new? Galectin‐1 is a glycan‐binding protein that plays a major role in the aggressiveness of glioblastomas (GBMs), via a number of different mechanisms. In different types of tumors, galectin‐1 has been demonstrated to contribute to tumor‐mediated immune evasion. Whether glioma‐derived galectin‐1 also contributes to glioma‐mediated immune evasion is unknown, however. In this study, the authors found that glioma‐derived galectin‐1 plays an important role in the regulation of myeloid cell accumulation within the tumor microenvironment. They also found that silencing of galectin‐1 could improve glioma‐bearing mice surviva
doi_str_mv 10.1002/ijc.28426
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00951339v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492631939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5516-887a8ef5bc1bae70c62b597954bcc33bc663d15985a162bb86a2bf0aff3394363</originalsourceid><addsrcrecordid>eNqN0c1q3DAQAGBREppt2kNfoBhCIT040b-lY1iaP5b00p7FWJZTLbK9keyUvfUR-ox9kmq7mwQCgZwGaT7mh0HoI8EnBGN66pf2hCpO5Rs0I1hXJaZE7KFZzuGyIkweoHcpLTEmRGD-Fh1QpqlmmM7QzUXwQwd_f_9pXPT3riluITg7-j5_kSK62ynA6FLh-z7HAvqmgAZWY7b5Mfpx6oZY-K6bej-u36P9FkJyH3bxEP04__p9flkuvl1czc8WpRWCyFKpCpRrRW1JDa7CVtJa6EoLXlvLWG2lZA0RWgkgOVUrCbRuMbQtY5ozyQ7Rl23dnxDMKvoO4toM4M3l2cJs_jDWgmR8T7I93tpVHO4ml0bT-WRdCNC7YUqGcE0lI5rpV9A8WMUrxTI9ekaXwxT7vPRGCcUF5-JpThuHlKJrH4cl2GxuZ_LtzP_bZftpV3GqO9c8yodjZfB5ByBZCG2E3vr05BTFueJmi9Ot--WDW7_c0Vxdz7et_wGC_q9C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465845445</pqid></control><display><type>article</type><title>Glioma‐derived galectin‐1 regulates innate and adaptive antitumor immunity</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><creator>Verschuere, Tina ; Toelen, Jaan ; Maes, Wim ; Poirier, Françoise ; Boon, Louis ; Tousseyn, Thomas ; Mathivet, Thomas ; Gerhardt, Holger ; Mathieu, Veronique ; Kiss, Robert ; Lefranc, Florence ; Van Gool, Stefaan W. ; Vleeschouwer, Steven De</creator><creatorcontrib>Verschuere, Tina ; Toelen, Jaan ; Maes, Wim ; Poirier, Françoise ; Boon, Louis ; Tousseyn, Thomas ; Mathivet, Thomas ; Gerhardt, Holger ; Mathieu, Veronique ; Kiss, Robert ; Lefranc, Florence ; Van Gool, Stefaan W. ; Vleeschouwer, Steven De</creatorcontrib><description>Galectin‐1 is a glycan‐binding protein, which is involved in the aggressiveness of glioblastoma (GBM) in part by stimulating angiogenesis. In different cancer models, galectin‐1 has also been demonstrated to play a pivotal role in tumor‐mediated immune evasion especially by modulating cells of the adaptive immune system. It is yet unknown whether the absence or presence of galectin‐1 within the glioma microenvironment also causes qualitative or quantitative differences in innate and/or adaptive antitumor immune responses. All experiments were performed in the orthotopic GL261 mouse high‐grade glioma model. Stable galectin‐1 knockdown was achieved via transduction of parental GL261 tumor cells with a lentiviral vector encoding a galectin‐1‐targeting miRNA. We demonstrated that the absence of tumor‐derived but not of host‐derived galectin‐1 significantly prolonged the survival of glioma‐bearing mice as such and in combination with dendritic cell (DC)‐based immunotherapy. Both flow cytometric and pathological analysis revealed that the silencing of glioma‐derived galectin‐1 significantly decreased the amount of brain‐infiltrating macrophages and myeloid‐derived suppressor cells (MDSC) in tumor‐bearing mice. Additionally, we revealed a pro‐angiogenic role for galectin‐1 within the glioma microenvironment. The data provided in this study reveal a pivotal role for glioma‐derived galectin‐1 in the regulation of myeloid cell accumulation within the glioma microenvironment, the most abundant immune cell population in high‐grade gliomas. Furthermore, the prolonged survival observed in untreated and DC‐vaccinated glioma‐bearing mice upon the silencing of tumor‐derived galectin‐1 strongly suggest that the in vivo targeting of tumor‐derived galectin‐1 might offer a promising and realistic adjuvant treatment modality in patients diagnosed with GBM. What's new? Galectin‐1 is a glycan‐binding protein that plays a major role in the aggressiveness of glioblastomas (GBMs), via a number of different mechanisms. In different types of tumors, galectin‐1 has been demonstrated to contribute to tumor‐mediated immune evasion. Whether glioma‐derived galectin‐1 also contributes to glioma‐mediated immune evasion is unknown, however. In this study, the authors found that glioma‐derived galectin‐1 plays an important role in the regulation of myeloid cell accumulation within the tumor microenvironment. They also found that silencing of galectin‐1 could improve glioma‐bearing mice survival. Intratumoral silencing of galectin‐1 may therefore offer a promising adjuvant treatment modality for patients with high‐grade glioma.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.28426</identifier><identifier>PMID: 23929302</identifier><identifier>CODEN: IJCNAW</identifier><language>eng</language><publisher>Hoboken, NJ: Wiley-Blackwell</publisher><subject>Adaptive Immunity ; Adaptive Immunity - immunology ; angiogenesis ; Animals ; Antigen-Presenting Cells ; Antigen-Presenting Cells - immunology ; Biological and medical sciences ; Biomarkers, Tumor - metabolism ; Blotting, Western ; Brain Neoplasms ; Brain Neoplasms - immunology ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Cancer ; Cell Proliferation ; dendritic cell immunotherapy ; Dendritic Cells ; Dendritic Cells - immunology ; Dendritic Cells - metabolism ; Dendritic Cells - pathology ; Disease Models, Animal ; Female ; Flow Cytometry ; Galectin 1 ; Galectin 1 - physiology ; glioblastoma ; Glioma ; Glioma - immunology ; Glioma - metabolism ; Glioma - pathology ; Immunity, Innate ; Immunity, Innate - immunology ; Immunoenzyme Techniques ; Immunotherapy ; Life Sciences ; Medical research ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Multiple tumors. Solid tumors. Tumors in childhood (general aspects) ; Myeloid Cells ; Myeloid Cells - immunology ; Myeloid Cells - metabolism ; Myeloid Cells - pathology ; Neovascularization, Pathologic ; Neovascularization, Pathologic - prevention &amp; control ; Neurology ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger ; RNA, Messenger - genetics ; Rodents ; Tumor Cells, Cultured ; Tumor Markers, Biological ; Tumors ; Tumors of the nervous system. Phacomatoses ; tumor‐infiltrating myeloid cells</subject><ispartof>International journal of cancer, 2014-02, Vol.134 (4), p.873-884</ispartof><rights>2013 UICC</rights><rights>2015 INIST-CNRS</rights><rights>2013 UICC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5516-887a8ef5bc1bae70c62b597954bcc33bc663d15985a162bb86a2bf0aff3394363</citedby><cites>FETCH-LOGICAL-c5516-887a8ef5bc1bae70c62b597954bcc33bc663d15985a162bb86a2bf0aff3394363</cites><orcidid>0000-0002-3030-0384 ; 0000-0002-9576-9917 ; 0000-0001-7761-1684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.28426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.28426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28200029$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23929302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00951339$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Verschuere, Tina</creatorcontrib><creatorcontrib>Toelen, Jaan</creatorcontrib><creatorcontrib>Maes, Wim</creatorcontrib><creatorcontrib>Poirier, Françoise</creatorcontrib><creatorcontrib>Boon, Louis</creatorcontrib><creatorcontrib>Tousseyn, Thomas</creatorcontrib><creatorcontrib>Mathivet, Thomas</creatorcontrib><creatorcontrib>Gerhardt, Holger</creatorcontrib><creatorcontrib>Mathieu, Veronique</creatorcontrib><creatorcontrib>Kiss, Robert</creatorcontrib><creatorcontrib>Lefranc, Florence</creatorcontrib><creatorcontrib>Van Gool, Stefaan W.</creatorcontrib><creatorcontrib>Vleeschouwer, Steven De</creatorcontrib><title>Glioma‐derived galectin‐1 regulates innate and adaptive antitumor immunity</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Galectin‐1 is a glycan‐binding protein, which is involved in the aggressiveness of glioblastoma (GBM) in part by stimulating angiogenesis. In different cancer models, galectin‐1 has also been demonstrated to play a pivotal role in tumor‐mediated immune evasion especially by modulating cells of the adaptive immune system. It is yet unknown whether the absence or presence of galectin‐1 within the glioma microenvironment also causes qualitative or quantitative differences in innate and/or adaptive antitumor immune responses. All experiments were performed in the orthotopic GL261 mouse high‐grade glioma model. Stable galectin‐1 knockdown was achieved via transduction of parental GL261 tumor cells with a lentiviral vector encoding a galectin‐1‐targeting miRNA. We demonstrated that the absence of tumor‐derived but not of host‐derived galectin‐1 significantly prolonged the survival of glioma‐bearing mice as such and in combination with dendritic cell (DC)‐based immunotherapy. Both flow cytometric and pathological analysis revealed that the silencing of glioma‐derived galectin‐1 significantly decreased the amount of brain‐infiltrating macrophages and myeloid‐derived suppressor cells (MDSC) in tumor‐bearing mice. Additionally, we revealed a pro‐angiogenic role for galectin‐1 within the glioma microenvironment. The data provided in this study reveal a pivotal role for glioma‐derived galectin‐1 in the regulation of myeloid cell accumulation within the glioma microenvironment, the most abundant immune cell population in high‐grade gliomas. Furthermore, the prolonged survival observed in untreated and DC‐vaccinated glioma‐bearing mice upon the silencing of tumor‐derived galectin‐1 strongly suggest that the in vivo targeting of tumor‐derived galectin‐1 might offer a promising and realistic adjuvant treatment modality in patients diagnosed with GBM. What's new? Galectin‐1 is a glycan‐binding protein that plays a major role in the aggressiveness of glioblastomas (GBMs), via a number of different mechanisms. In different types of tumors, galectin‐1 has been demonstrated to contribute to tumor‐mediated immune evasion. Whether glioma‐derived galectin‐1 also contributes to glioma‐mediated immune evasion is unknown, however. In this study, the authors found that glioma‐derived galectin‐1 plays an important role in the regulation of myeloid cell accumulation within the tumor microenvironment. They also found that silencing of galectin‐1 could improve glioma‐bearing mice survival. Intratumoral silencing of galectin‐1 may therefore offer a promising adjuvant treatment modality for patients with high‐grade glioma.</description><subject>Adaptive Immunity</subject><subject>Adaptive Immunity - immunology</subject><subject>angiogenesis</subject><subject>Animals</subject><subject>Antigen-Presenting Cells</subject><subject>Antigen-Presenting Cells - immunology</subject><subject>Biological and medical sciences</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Blotting, Western</subject><subject>Brain Neoplasms</subject><subject>Brain Neoplasms - immunology</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cell Proliferation</subject><subject>dendritic cell immunotherapy</subject><subject>Dendritic Cells</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - metabolism</subject><subject>Dendritic Cells - pathology</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Flow Cytometry</subject><subject>Galectin 1</subject><subject>Galectin 1 - physiology</subject><subject>glioblastoma</subject><subject>Glioma</subject><subject>Glioma - immunology</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Immunity, Innate</subject><subject>Immunity, Innate - immunology</subject><subject>Immunoenzyme Techniques</subject><subject>Immunotherapy</subject><subject>Life Sciences</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Multiple tumors. Solid tumors. Tumors in childhood (general aspects)</subject><subject>Myeloid Cells</subject><subject>Myeloid Cells - immunology</subject><subject>Myeloid Cells - metabolism</subject><subject>Myeloid Cells - pathology</subject><subject>Neovascularization, Pathologic</subject><subject>Neovascularization, Pathologic - prevention &amp; control</subject><subject>Neurology</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger</subject><subject>RNA, Messenger - genetics</subject><subject>Rodents</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Markers, Biological</subject><subject>Tumors</subject><subject>Tumors of the nervous system. Phacomatoses</subject><subject>tumor‐infiltrating myeloid cells</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c1q3DAQAGBREppt2kNfoBhCIT040b-lY1iaP5b00p7FWJZTLbK9keyUvfUR-ox9kmq7mwQCgZwGaT7mh0HoI8EnBGN66pf2hCpO5Rs0I1hXJaZE7KFZzuGyIkweoHcpLTEmRGD-Fh1QpqlmmM7QzUXwQwd_f_9pXPT3riluITg7-j5_kSK62ynA6FLh-z7HAvqmgAZWY7b5Mfpx6oZY-K6bej-u36P9FkJyH3bxEP04__p9flkuvl1czc8WpRWCyFKpCpRrRW1JDa7CVtJa6EoLXlvLWG2lZA0RWgkgOVUrCbRuMbQtY5ozyQ7Rl23dnxDMKvoO4toM4M3l2cJs_jDWgmR8T7I93tpVHO4ml0bT-WRdCNC7YUqGcE0lI5rpV9A8WMUrxTI9ekaXwxT7vPRGCcUF5-JpThuHlKJrH4cl2GxuZ_LtzP_bZftpV3GqO9c8yodjZfB5ByBZCG2E3vr05BTFueJmi9Ot--WDW7_c0Vxdz7et_wGC_q9C</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>Verschuere, Tina</creator><creator>Toelen, Jaan</creator><creator>Maes, Wim</creator><creator>Poirier, Françoise</creator><creator>Boon, Louis</creator><creator>Tousseyn, Thomas</creator><creator>Mathivet, Thomas</creator><creator>Gerhardt, Holger</creator><creator>Mathieu, Veronique</creator><creator>Kiss, Robert</creator><creator>Lefranc, Florence</creator><creator>Van Gool, Stefaan W.</creator><creator>Vleeschouwer, Steven De</creator><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3030-0384</orcidid><orcidid>https://orcid.org/0000-0002-9576-9917</orcidid><orcidid>https://orcid.org/0000-0001-7761-1684</orcidid></search><sort><creationdate>20140215</creationdate><title>Glioma‐derived galectin‐1 regulates innate and adaptive antitumor immunity</title><author>Verschuere, Tina ; Toelen, Jaan ; Maes, Wim ; Poirier, Françoise ; Boon, Louis ; Tousseyn, Thomas ; Mathivet, Thomas ; Gerhardt, Holger ; Mathieu, Veronique ; Kiss, Robert ; Lefranc, Florence ; Van Gool, Stefaan W. ; Vleeschouwer, Steven De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5516-887a8ef5bc1bae70c62b597954bcc33bc663d15985a162bb86a2bf0aff3394363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive Immunity</topic><topic>Adaptive Immunity - immunology</topic><topic>angiogenesis</topic><topic>Animals</topic><topic>Antigen-Presenting Cells</topic><topic>Antigen-Presenting Cells - immunology</topic><topic>Biological and medical sciences</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Blotting, Western</topic><topic>Brain Neoplasms</topic><topic>Brain Neoplasms - immunology</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cell Proliferation</topic><topic>dendritic cell immunotherapy</topic><topic>Dendritic Cells</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - metabolism</topic><topic>Dendritic Cells - pathology</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Flow Cytometry</topic><topic>Galectin 1</topic><topic>Galectin 1 - physiology</topic><topic>glioblastoma</topic><topic>Glioma</topic><topic>Glioma - immunology</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Immunity, Innate</topic><topic>Immunity, Innate - immunology</topic><topic>Immunoenzyme Techniques</topic><topic>Immunotherapy</topic><topic>Life Sciences</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Multiple tumors. Solid tumors. Tumors in childhood (general aspects)</topic><topic>Myeloid Cells</topic><topic>Myeloid Cells - immunology</topic><topic>Myeloid Cells - metabolism</topic><topic>Myeloid Cells - pathology</topic><topic>Neovascularization, Pathologic</topic><topic>Neovascularization, Pathologic - prevention &amp; control</topic><topic>Neurology</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger</topic><topic>RNA, Messenger - genetics</topic><topic>Rodents</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Markers, Biological</topic><topic>Tumors</topic><topic>Tumors of the nervous system. Phacomatoses</topic><topic>tumor‐infiltrating myeloid cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verschuere, Tina</creatorcontrib><creatorcontrib>Toelen, Jaan</creatorcontrib><creatorcontrib>Maes, Wim</creatorcontrib><creatorcontrib>Poirier, Françoise</creatorcontrib><creatorcontrib>Boon, Louis</creatorcontrib><creatorcontrib>Tousseyn, Thomas</creatorcontrib><creatorcontrib>Mathivet, Thomas</creatorcontrib><creatorcontrib>Gerhardt, Holger</creatorcontrib><creatorcontrib>Mathieu, Veronique</creatorcontrib><creatorcontrib>Kiss, Robert</creatorcontrib><creatorcontrib>Lefranc, Florence</creatorcontrib><creatorcontrib>Van Gool, Stefaan W.</creatorcontrib><creatorcontrib>Vleeschouwer, Steven De</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verschuere, Tina</au><au>Toelen, Jaan</au><au>Maes, Wim</au><au>Poirier, Françoise</au><au>Boon, Louis</au><au>Tousseyn, Thomas</au><au>Mathivet, Thomas</au><au>Gerhardt, Holger</au><au>Mathieu, Veronique</au><au>Kiss, Robert</au><au>Lefranc, Florence</au><au>Van Gool, Stefaan W.</au><au>Vleeschouwer, Steven De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glioma‐derived galectin‐1 regulates innate and adaptive antitumor immunity</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2014-02-15</date><risdate>2014</risdate><volume>134</volume><issue>4</issue><spage>873</spage><epage>884</epage><pages>873-884</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><coden>IJCNAW</coden><abstract>Galectin‐1 is a glycan‐binding protein, which is involved in the aggressiveness of glioblastoma (GBM) in part by stimulating angiogenesis. In different cancer models, galectin‐1 has also been demonstrated to play a pivotal role in tumor‐mediated immune evasion especially by modulating cells of the adaptive immune system. It is yet unknown whether the absence or presence of galectin‐1 within the glioma microenvironment also causes qualitative or quantitative differences in innate and/or adaptive antitumor immune responses. All experiments were performed in the orthotopic GL261 mouse high‐grade glioma model. Stable galectin‐1 knockdown was achieved via transduction of parental GL261 tumor cells with a lentiviral vector encoding a galectin‐1‐targeting miRNA. We demonstrated that the absence of tumor‐derived but not of host‐derived galectin‐1 significantly prolonged the survival of glioma‐bearing mice as such and in combination with dendritic cell (DC)‐based immunotherapy. Both flow cytometric and pathological analysis revealed that the silencing of glioma‐derived galectin‐1 significantly decreased the amount of brain‐infiltrating macrophages and myeloid‐derived suppressor cells (MDSC) in tumor‐bearing mice. Additionally, we revealed a pro‐angiogenic role for galectin‐1 within the glioma microenvironment. The data provided in this study reveal a pivotal role for glioma‐derived galectin‐1 in the regulation of myeloid cell accumulation within the glioma microenvironment, the most abundant immune cell population in high‐grade gliomas. Furthermore, the prolonged survival observed in untreated and DC‐vaccinated glioma‐bearing mice upon the silencing of tumor‐derived galectin‐1 strongly suggest that the in vivo targeting of tumor‐derived galectin‐1 might offer a promising and realistic adjuvant treatment modality in patients diagnosed with GBM. What's new? Galectin‐1 is a glycan‐binding protein that plays a major role in the aggressiveness of glioblastomas (GBMs), via a number of different mechanisms. In different types of tumors, galectin‐1 has been demonstrated to contribute to tumor‐mediated immune evasion. Whether glioma‐derived galectin‐1 also contributes to glioma‐mediated immune evasion is unknown, however. In this study, the authors found that glioma‐derived galectin‐1 plays an important role in the regulation of myeloid cell accumulation within the tumor microenvironment. They also found that silencing of galectin‐1 could improve glioma‐bearing mice survival. Intratumoral silencing of galectin‐1 may therefore offer a promising adjuvant treatment modality for patients with high‐grade glioma.</abstract><cop>Hoboken, NJ</cop><pub>Wiley-Blackwell</pub><pmid>23929302</pmid><doi>10.1002/ijc.28426</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3030-0384</orcidid><orcidid>https://orcid.org/0000-0002-9576-9917</orcidid><orcidid>https://orcid.org/0000-0001-7761-1684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7136
ispartof International journal of cancer, 2014-02, Vol.134 (4), p.873-884
issn 0020-7136
1097-0215
language eng
recordid cdi_hal_primary_oai_HAL_hal_00951339v1
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library
subjects Adaptive Immunity
Adaptive Immunity - immunology
angiogenesis
Animals
Antigen-Presenting Cells
Antigen-Presenting Cells - immunology
Biological and medical sciences
Biomarkers, Tumor - metabolism
Blotting, Western
Brain Neoplasms
Brain Neoplasms - immunology
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Cancer
Cell Proliferation
dendritic cell immunotherapy
Dendritic Cells
Dendritic Cells - immunology
Dendritic Cells - metabolism
Dendritic Cells - pathology
Disease Models, Animal
Female
Flow Cytometry
Galectin 1
Galectin 1 - physiology
glioblastoma
Glioma
Glioma - immunology
Glioma - metabolism
Glioma - pathology
Immunity, Innate
Immunity, Innate - immunology
Immunoenzyme Techniques
Immunotherapy
Life Sciences
Medical research
Medical sciences
Mice
Mice, Inbred C57BL
Mice, Knockout
Multiple tumors. Solid tumors. Tumors in childhood (general aspects)
Myeloid Cells
Myeloid Cells - immunology
Myeloid Cells - metabolism
Myeloid Cells - pathology
Neovascularization, Pathologic
Neovascularization, Pathologic - prevention & control
Neurology
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger
RNA, Messenger - genetics
Rodents
Tumor Cells, Cultured
Tumor Markers, Biological
Tumors
Tumors of the nervous system. Phacomatoses
tumor‐infiltrating myeloid cells
title Glioma‐derived galectin‐1 regulates innate and adaptive antitumor immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glioma%E2%80%90derived%20galectin%E2%80%901%20regulates%20innate%20and%20adaptive%20antitumor%20immunity&rft.jtitle=International%20journal%20of%20cancer&rft.au=Verschuere,%20Tina&rft.date=2014-02-15&rft.volume=134&rft.issue=4&rft.spage=873&rft.epage=884&rft.pages=873-884&rft.issn=0020-7136&rft.eissn=1097-0215&rft.coden=IJCNAW&rft_id=info:doi/10.1002/ijc.28426&rft_dat=%3Cproquest_hal_p%3E1492631939%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465845445&rft_id=info:pmid/23929302&rfr_iscdi=true