Glioma‐derived galectin‐1 regulates innate and adaptive antitumor immunity
Galectin‐1 is a glycan‐binding protein, which is involved in the aggressiveness of glioblastoma (GBM) in part by stimulating angiogenesis. In different cancer models, galectin‐1 has also been demonstrated to play a pivotal role in tumor‐mediated immune evasion especially by modulating cells of the a...
Gespeichert in:
Veröffentlicht in: | International journal of cancer 2014-02, Vol.134 (4), p.873-884 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 884 |
---|---|
container_issue | 4 |
container_start_page | 873 |
container_title | International journal of cancer |
container_volume | 134 |
creator | Verschuere, Tina Toelen, Jaan Maes, Wim Poirier, Françoise Boon, Louis Tousseyn, Thomas Mathivet, Thomas Gerhardt, Holger Mathieu, Veronique Kiss, Robert Lefranc, Florence Van Gool, Stefaan W. Vleeschouwer, Steven De |
description | Galectin‐1 is a glycan‐binding protein, which is involved in the aggressiveness of glioblastoma (GBM) in part by stimulating angiogenesis. In different cancer models, galectin‐1 has also been demonstrated to play a pivotal role in tumor‐mediated immune evasion especially by modulating cells of the adaptive immune system. It is yet unknown whether the absence or presence of galectin‐1 within the glioma microenvironment also causes qualitative or quantitative differences in innate and/or adaptive antitumor immune responses. All experiments were performed in the orthotopic GL261 mouse high‐grade glioma model. Stable galectin‐1 knockdown was achieved via transduction of parental GL261 tumor cells with a lentiviral vector encoding a galectin‐1‐targeting miRNA. We demonstrated that the absence of tumor‐derived but not of host‐derived galectin‐1 significantly prolonged the survival of glioma‐bearing mice as such and in combination with dendritic cell (DC)‐based immunotherapy. Both flow cytometric and pathological analysis revealed that the silencing of glioma‐derived galectin‐1 significantly decreased the amount of brain‐infiltrating macrophages and myeloid‐derived suppressor cells (MDSC) in tumor‐bearing mice. Additionally, we revealed a pro‐angiogenic role for galectin‐1 within the glioma microenvironment. The data provided in this study reveal a pivotal role for glioma‐derived galectin‐1 in the regulation of myeloid cell accumulation within the glioma microenvironment, the most abundant immune cell population in high‐grade gliomas. Furthermore, the prolonged survival observed in untreated and DC‐vaccinated glioma‐bearing mice upon the silencing of tumor‐derived galectin‐1 strongly suggest that the in vivo targeting of tumor‐derived galectin‐1 might offer a promising and realistic adjuvant treatment modality in patients diagnosed with GBM.
What's new?
Galectin‐1 is a glycan‐binding protein that plays a major role in the aggressiveness of glioblastomas (GBMs), via a number of different mechanisms. In different types of tumors, galectin‐1 has been demonstrated to contribute to tumor‐mediated immune evasion. Whether glioma‐derived galectin‐1 also contributes to glioma‐mediated immune evasion is unknown, however. In this study, the authors found that glioma‐derived galectin‐1 plays an important role in the regulation of myeloid cell accumulation within the tumor microenvironment. They also found that silencing of galectin‐1 could improve glioma‐bearing mice surviva |
doi_str_mv | 10.1002/ijc.28426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00951339v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492631939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5516-887a8ef5bc1bae70c62b597954bcc33bc663d15985a162bb86a2bf0aff3394363</originalsourceid><addsrcrecordid>eNqN0c1q3DAQAGBREppt2kNfoBhCIT040b-lY1iaP5b00p7FWJZTLbK9keyUvfUR-ox9kmq7mwQCgZwGaT7mh0HoI8EnBGN66pf2hCpO5Rs0I1hXJaZE7KFZzuGyIkweoHcpLTEmRGD-Fh1QpqlmmM7QzUXwQwd_f_9pXPT3riluITg7-j5_kSK62ynA6FLh-z7HAvqmgAZWY7b5Mfpx6oZY-K6bej-u36P9FkJyH3bxEP04__p9flkuvl1czc8WpRWCyFKpCpRrRW1JDa7CVtJa6EoLXlvLWG2lZA0RWgkgOVUrCbRuMbQtY5ozyQ7Rl23dnxDMKvoO4toM4M3l2cJs_jDWgmR8T7I93tpVHO4ml0bT-WRdCNC7YUqGcE0lI5rpV9A8WMUrxTI9ekaXwxT7vPRGCcUF5-JpThuHlKJrH4cl2GxuZ_LtzP_bZftpV3GqO9c8yodjZfB5ByBZCG2E3vr05BTFueJmi9Ot--WDW7_c0Vxdz7et_wGC_q9C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465845445</pqid></control><display><type>article</type><title>Glioma‐derived galectin‐1 regulates innate and adaptive antitumor immunity</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><creator>Verschuere, Tina ; Toelen, Jaan ; Maes, Wim ; Poirier, Françoise ; Boon, Louis ; Tousseyn, Thomas ; Mathivet, Thomas ; Gerhardt, Holger ; Mathieu, Veronique ; Kiss, Robert ; Lefranc, Florence ; Van Gool, Stefaan W. ; Vleeschouwer, Steven De</creator><creatorcontrib>Verschuere, Tina ; Toelen, Jaan ; Maes, Wim ; Poirier, Françoise ; Boon, Louis ; Tousseyn, Thomas ; Mathivet, Thomas ; Gerhardt, Holger ; Mathieu, Veronique ; Kiss, Robert ; Lefranc, Florence ; Van Gool, Stefaan W. ; Vleeschouwer, Steven De</creatorcontrib><description>Galectin‐1 is a glycan‐binding protein, which is involved in the aggressiveness of glioblastoma (GBM) in part by stimulating angiogenesis. In different cancer models, galectin‐1 has also been demonstrated to play a pivotal role in tumor‐mediated immune evasion especially by modulating cells of the adaptive immune system. It is yet unknown whether the absence or presence of galectin‐1 within the glioma microenvironment also causes qualitative or quantitative differences in innate and/or adaptive antitumor immune responses. All experiments were performed in the orthotopic GL261 mouse high‐grade glioma model. Stable galectin‐1 knockdown was achieved via transduction of parental GL261 tumor cells with a lentiviral vector encoding a galectin‐1‐targeting miRNA. We demonstrated that the absence of tumor‐derived but not of host‐derived galectin‐1 significantly prolonged the survival of glioma‐bearing mice as such and in combination with dendritic cell (DC)‐based immunotherapy. Both flow cytometric and pathological analysis revealed that the silencing of glioma‐derived galectin‐1 significantly decreased the amount of brain‐infiltrating macrophages and myeloid‐derived suppressor cells (MDSC) in tumor‐bearing mice. Additionally, we revealed a pro‐angiogenic role for galectin‐1 within the glioma microenvironment. The data provided in this study reveal a pivotal role for glioma‐derived galectin‐1 in the regulation of myeloid cell accumulation within the glioma microenvironment, the most abundant immune cell population in high‐grade gliomas. Furthermore, the prolonged survival observed in untreated and DC‐vaccinated glioma‐bearing mice upon the silencing of tumor‐derived galectin‐1 strongly suggest that the in vivo targeting of tumor‐derived galectin‐1 might offer a promising and realistic adjuvant treatment modality in patients diagnosed with GBM.
What's new?
Galectin‐1 is a glycan‐binding protein that plays a major role in the aggressiveness of glioblastomas (GBMs), via a number of different mechanisms. In different types of tumors, galectin‐1 has been demonstrated to contribute to tumor‐mediated immune evasion. Whether glioma‐derived galectin‐1 also contributes to glioma‐mediated immune evasion is unknown, however. In this study, the authors found that glioma‐derived galectin‐1 plays an important role in the regulation of myeloid cell accumulation within the tumor microenvironment. They also found that silencing of galectin‐1 could improve glioma‐bearing mice survival. Intratumoral silencing of galectin‐1 may therefore offer a promising adjuvant treatment modality for patients with high‐grade glioma.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.28426</identifier><identifier>PMID: 23929302</identifier><identifier>CODEN: IJCNAW</identifier><language>eng</language><publisher>Hoboken, NJ: Wiley-Blackwell</publisher><subject>Adaptive Immunity ; Adaptive Immunity - immunology ; angiogenesis ; Animals ; Antigen-Presenting Cells ; Antigen-Presenting Cells - immunology ; Biological and medical sciences ; Biomarkers, Tumor - metabolism ; Blotting, Western ; Brain Neoplasms ; Brain Neoplasms - immunology ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Cancer ; Cell Proliferation ; dendritic cell immunotherapy ; Dendritic Cells ; Dendritic Cells - immunology ; Dendritic Cells - metabolism ; Dendritic Cells - pathology ; Disease Models, Animal ; Female ; Flow Cytometry ; Galectin 1 ; Galectin 1 - physiology ; glioblastoma ; Glioma ; Glioma - immunology ; Glioma - metabolism ; Glioma - pathology ; Immunity, Innate ; Immunity, Innate - immunology ; Immunoenzyme Techniques ; Immunotherapy ; Life Sciences ; Medical research ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Multiple tumors. Solid tumors. Tumors in childhood (general aspects) ; Myeloid Cells ; Myeloid Cells - immunology ; Myeloid Cells - metabolism ; Myeloid Cells - pathology ; Neovascularization, Pathologic ; Neovascularization, Pathologic - prevention & control ; Neurology ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger ; RNA, Messenger - genetics ; Rodents ; Tumor Cells, Cultured ; Tumor Markers, Biological ; Tumors ; Tumors of the nervous system. Phacomatoses ; tumor‐infiltrating myeloid cells</subject><ispartof>International journal of cancer, 2014-02, Vol.134 (4), p.873-884</ispartof><rights>2013 UICC</rights><rights>2015 INIST-CNRS</rights><rights>2013 UICC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5516-887a8ef5bc1bae70c62b597954bcc33bc663d15985a162bb86a2bf0aff3394363</citedby><cites>FETCH-LOGICAL-c5516-887a8ef5bc1bae70c62b597954bcc33bc663d15985a162bb86a2bf0aff3394363</cites><orcidid>0000-0002-3030-0384 ; 0000-0002-9576-9917 ; 0000-0001-7761-1684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.28426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.28426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28200029$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23929302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00951339$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Verschuere, Tina</creatorcontrib><creatorcontrib>Toelen, Jaan</creatorcontrib><creatorcontrib>Maes, Wim</creatorcontrib><creatorcontrib>Poirier, Françoise</creatorcontrib><creatorcontrib>Boon, Louis</creatorcontrib><creatorcontrib>Tousseyn, Thomas</creatorcontrib><creatorcontrib>Mathivet, Thomas</creatorcontrib><creatorcontrib>Gerhardt, Holger</creatorcontrib><creatorcontrib>Mathieu, Veronique</creatorcontrib><creatorcontrib>Kiss, Robert</creatorcontrib><creatorcontrib>Lefranc, Florence</creatorcontrib><creatorcontrib>Van Gool, Stefaan W.</creatorcontrib><creatorcontrib>Vleeschouwer, Steven De</creatorcontrib><title>Glioma‐derived galectin‐1 regulates innate and adaptive antitumor immunity</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Galectin‐1 is a glycan‐binding protein, which is involved in the aggressiveness of glioblastoma (GBM) in part by stimulating angiogenesis. In different cancer models, galectin‐1 has also been demonstrated to play a pivotal role in tumor‐mediated immune evasion especially by modulating cells of the adaptive immune system. It is yet unknown whether the absence or presence of galectin‐1 within the glioma microenvironment also causes qualitative or quantitative differences in innate and/or adaptive antitumor immune responses. All experiments were performed in the orthotopic GL261 mouse high‐grade glioma model. Stable galectin‐1 knockdown was achieved via transduction of parental GL261 tumor cells with a lentiviral vector encoding a galectin‐1‐targeting miRNA. We demonstrated that the absence of tumor‐derived but not of host‐derived galectin‐1 significantly prolonged the survival of glioma‐bearing mice as such and in combination with dendritic cell (DC)‐based immunotherapy. Both flow cytometric and pathological analysis revealed that the silencing of glioma‐derived galectin‐1 significantly decreased the amount of brain‐infiltrating macrophages and myeloid‐derived suppressor cells (MDSC) in tumor‐bearing mice. Additionally, we revealed a pro‐angiogenic role for galectin‐1 within the glioma microenvironment. The data provided in this study reveal a pivotal role for glioma‐derived galectin‐1 in the regulation of myeloid cell accumulation within the glioma microenvironment, the most abundant immune cell population in high‐grade gliomas. Furthermore, the prolonged survival observed in untreated and DC‐vaccinated glioma‐bearing mice upon the silencing of tumor‐derived galectin‐1 strongly suggest that the in vivo targeting of tumor‐derived galectin‐1 might offer a promising and realistic adjuvant treatment modality in patients diagnosed with GBM.
What's new?
Galectin‐1 is a glycan‐binding protein that plays a major role in the aggressiveness of glioblastomas (GBMs), via a number of different mechanisms. In different types of tumors, galectin‐1 has been demonstrated to contribute to tumor‐mediated immune evasion. Whether glioma‐derived galectin‐1 also contributes to glioma‐mediated immune evasion is unknown, however. In this study, the authors found that glioma‐derived galectin‐1 plays an important role in the regulation of myeloid cell accumulation within the tumor microenvironment. They also found that silencing of galectin‐1 could improve glioma‐bearing mice survival. Intratumoral silencing of galectin‐1 may therefore offer a promising adjuvant treatment modality for patients with high‐grade glioma.</description><subject>Adaptive Immunity</subject><subject>Adaptive Immunity - immunology</subject><subject>angiogenesis</subject><subject>Animals</subject><subject>Antigen-Presenting Cells</subject><subject>Antigen-Presenting Cells - immunology</subject><subject>Biological and medical sciences</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Blotting, Western</subject><subject>Brain Neoplasms</subject><subject>Brain Neoplasms - immunology</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cell Proliferation</subject><subject>dendritic cell immunotherapy</subject><subject>Dendritic Cells</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - metabolism</subject><subject>Dendritic Cells - pathology</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Flow Cytometry</subject><subject>Galectin 1</subject><subject>Galectin 1 - physiology</subject><subject>glioblastoma</subject><subject>Glioma</subject><subject>Glioma - immunology</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Immunity, Innate</subject><subject>Immunity, Innate - immunology</subject><subject>Immunoenzyme Techniques</subject><subject>Immunotherapy</subject><subject>Life Sciences</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Multiple tumors. Solid tumors. Tumors in childhood (general aspects)</subject><subject>Myeloid Cells</subject><subject>Myeloid Cells - immunology</subject><subject>Myeloid Cells - metabolism</subject><subject>Myeloid Cells - pathology</subject><subject>Neovascularization, Pathologic</subject><subject>Neovascularization, Pathologic - prevention & control</subject><subject>Neurology</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger</subject><subject>RNA, Messenger - genetics</subject><subject>Rodents</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Markers, Biological</subject><subject>Tumors</subject><subject>Tumors of the nervous system. Phacomatoses</subject><subject>tumor‐infiltrating myeloid cells</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c1q3DAQAGBREppt2kNfoBhCIT040b-lY1iaP5b00p7FWJZTLbK9keyUvfUR-ox9kmq7mwQCgZwGaT7mh0HoI8EnBGN66pf2hCpO5Rs0I1hXJaZE7KFZzuGyIkweoHcpLTEmRGD-Fh1QpqlmmM7QzUXwQwd_f_9pXPT3riluITg7-j5_kSK62ynA6FLh-z7HAvqmgAZWY7b5Mfpx6oZY-K6bej-u36P9FkJyH3bxEP04__p9flkuvl1czc8WpRWCyFKpCpRrRW1JDa7CVtJa6EoLXlvLWG2lZA0RWgkgOVUrCbRuMbQtY5ozyQ7Rl23dnxDMKvoO4toM4M3l2cJs_jDWgmR8T7I93tpVHO4ml0bT-WRdCNC7YUqGcE0lI5rpV9A8WMUrxTI9ekaXwxT7vPRGCcUF5-JpThuHlKJrH4cl2GxuZ_LtzP_bZftpV3GqO9c8yodjZfB5ByBZCG2E3vr05BTFueJmi9Ot--WDW7_c0Vxdz7et_wGC_q9C</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>Verschuere, Tina</creator><creator>Toelen, Jaan</creator><creator>Maes, Wim</creator><creator>Poirier, Françoise</creator><creator>Boon, Louis</creator><creator>Tousseyn, Thomas</creator><creator>Mathivet, Thomas</creator><creator>Gerhardt, Holger</creator><creator>Mathieu, Veronique</creator><creator>Kiss, Robert</creator><creator>Lefranc, Florence</creator><creator>Van Gool, Stefaan W.</creator><creator>Vleeschouwer, Steven De</creator><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3030-0384</orcidid><orcidid>https://orcid.org/0000-0002-9576-9917</orcidid><orcidid>https://orcid.org/0000-0001-7761-1684</orcidid></search><sort><creationdate>20140215</creationdate><title>Glioma‐derived galectin‐1 regulates innate and adaptive antitumor immunity</title><author>Verschuere, Tina ; Toelen, Jaan ; Maes, Wim ; Poirier, Françoise ; Boon, Louis ; Tousseyn, Thomas ; Mathivet, Thomas ; Gerhardt, Holger ; Mathieu, Veronique ; Kiss, Robert ; Lefranc, Florence ; Van Gool, Stefaan W. ; Vleeschouwer, Steven De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5516-887a8ef5bc1bae70c62b597954bcc33bc663d15985a162bb86a2bf0aff3394363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive Immunity</topic><topic>Adaptive Immunity - immunology</topic><topic>angiogenesis</topic><topic>Animals</topic><topic>Antigen-Presenting Cells</topic><topic>Antigen-Presenting Cells - immunology</topic><topic>Biological and medical sciences</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Blotting, Western</topic><topic>Brain Neoplasms</topic><topic>Brain Neoplasms - immunology</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cell Proliferation</topic><topic>dendritic cell immunotherapy</topic><topic>Dendritic Cells</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - metabolism</topic><topic>Dendritic Cells - pathology</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Flow Cytometry</topic><topic>Galectin 1</topic><topic>Galectin 1 - physiology</topic><topic>glioblastoma</topic><topic>Glioma</topic><topic>Glioma - immunology</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Immunity, Innate</topic><topic>Immunity, Innate - immunology</topic><topic>Immunoenzyme Techniques</topic><topic>Immunotherapy</topic><topic>Life Sciences</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Multiple tumors. Solid tumors. Tumors in childhood (general aspects)</topic><topic>Myeloid Cells</topic><topic>Myeloid Cells - immunology</topic><topic>Myeloid Cells - metabolism</topic><topic>Myeloid Cells - pathology</topic><topic>Neovascularization, Pathologic</topic><topic>Neovascularization, Pathologic - prevention & control</topic><topic>Neurology</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger</topic><topic>RNA, Messenger - genetics</topic><topic>Rodents</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Markers, Biological</topic><topic>Tumors</topic><topic>Tumors of the nervous system. Phacomatoses</topic><topic>tumor‐infiltrating myeloid cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verschuere, Tina</creatorcontrib><creatorcontrib>Toelen, Jaan</creatorcontrib><creatorcontrib>Maes, Wim</creatorcontrib><creatorcontrib>Poirier, Françoise</creatorcontrib><creatorcontrib>Boon, Louis</creatorcontrib><creatorcontrib>Tousseyn, Thomas</creatorcontrib><creatorcontrib>Mathivet, Thomas</creatorcontrib><creatorcontrib>Gerhardt, Holger</creatorcontrib><creatorcontrib>Mathieu, Veronique</creatorcontrib><creatorcontrib>Kiss, Robert</creatorcontrib><creatorcontrib>Lefranc, Florence</creatorcontrib><creatorcontrib>Van Gool, Stefaan W.</creatorcontrib><creatorcontrib>Vleeschouwer, Steven De</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verschuere, Tina</au><au>Toelen, Jaan</au><au>Maes, Wim</au><au>Poirier, Françoise</au><au>Boon, Louis</au><au>Tousseyn, Thomas</au><au>Mathivet, Thomas</au><au>Gerhardt, Holger</au><au>Mathieu, Veronique</au><au>Kiss, Robert</au><au>Lefranc, Florence</au><au>Van Gool, Stefaan W.</au><au>Vleeschouwer, Steven De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glioma‐derived galectin‐1 regulates innate and adaptive antitumor immunity</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2014-02-15</date><risdate>2014</risdate><volume>134</volume><issue>4</issue><spage>873</spage><epage>884</epage><pages>873-884</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><coden>IJCNAW</coden><abstract>Galectin‐1 is a glycan‐binding protein, which is involved in the aggressiveness of glioblastoma (GBM) in part by stimulating angiogenesis. In different cancer models, galectin‐1 has also been demonstrated to play a pivotal role in tumor‐mediated immune evasion especially by modulating cells of the adaptive immune system. It is yet unknown whether the absence or presence of galectin‐1 within the glioma microenvironment also causes qualitative or quantitative differences in innate and/or adaptive antitumor immune responses. All experiments were performed in the orthotopic GL261 mouse high‐grade glioma model. Stable galectin‐1 knockdown was achieved via transduction of parental GL261 tumor cells with a lentiviral vector encoding a galectin‐1‐targeting miRNA. We demonstrated that the absence of tumor‐derived but not of host‐derived galectin‐1 significantly prolonged the survival of glioma‐bearing mice as such and in combination with dendritic cell (DC)‐based immunotherapy. Both flow cytometric and pathological analysis revealed that the silencing of glioma‐derived galectin‐1 significantly decreased the amount of brain‐infiltrating macrophages and myeloid‐derived suppressor cells (MDSC) in tumor‐bearing mice. Additionally, we revealed a pro‐angiogenic role for galectin‐1 within the glioma microenvironment. The data provided in this study reveal a pivotal role for glioma‐derived galectin‐1 in the regulation of myeloid cell accumulation within the glioma microenvironment, the most abundant immune cell population in high‐grade gliomas. Furthermore, the prolonged survival observed in untreated and DC‐vaccinated glioma‐bearing mice upon the silencing of tumor‐derived galectin‐1 strongly suggest that the in vivo targeting of tumor‐derived galectin‐1 might offer a promising and realistic adjuvant treatment modality in patients diagnosed with GBM.
What's new?
Galectin‐1 is a glycan‐binding protein that plays a major role in the aggressiveness of glioblastomas (GBMs), via a number of different mechanisms. In different types of tumors, galectin‐1 has been demonstrated to contribute to tumor‐mediated immune evasion. Whether glioma‐derived galectin‐1 also contributes to glioma‐mediated immune evasion is unknown, however. In this study, the authors found that glioma‐derived galectin‐1 plays an important role in the regulation of myeloid cell accumulation within the tumor microenvironment. They also found that silencing of galectin‐1 could improve glioma‐bearing mice survival. Intratumoral silencing of galectin‐1 may therefore offer a promising adjuvant treatment modality for patients with high‐grade glioma.</abstract><cop>Hoboken, NJ</cop><pub>Wiley-Blackwell</pub><pmid>23929302</pmid><doi>10.1002/ijc.28426</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3030-0384</orcidid><orcidid>https://orcid.org/0000-0002-9576-9917</orcidid><orcidid>https://orcid.org/0000-0001-7761-1684</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7136 |
ispartof | International journal of cancer, 2014-02, Vol.134 (4), p.873-884 |
issn | 0020-7136 1097-0215 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00951339v1 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library |
subjects | Adaptive Immunity Adaptive Immunity - immunology angiogenesis Animals Antigen-Presenting Cells Antigen-Presenting Cells - immunology Biological and medical sciences Biomarkers, Tumor - metabolism Blotting, Western Brain Neoplasms Brain Neoplasms - immunology Brain Neoplasms - metabolism Brain Neoplasms - pathology Cancer Cell Proliferation dendritic cell immunotherapy Dendritic Cells Dendritic Cells - immunology Dendritic Cells - metabolism Dendritic Cells - pathology Disease Models, Animal Female Flow Cytometry Galectin 1 Galectin 1 - physiology glioblastoma Glioma Glioma - immunology Glioma - metabolism Glioma - pathology Immunity, Innate Immunity, Innate - immunology Immunoenzyme Techniques Immunotherapy Life Sciences Medical research Medical sciences Mice Mice, Inbred C57BL Mice, Knockout Multiple tumors. Solid tumors. Tumors in childhood (general aspects) Myeloid Cells Myeloid Cells - immunology Myeloid Cells - metabolism Myeloid Cells - pathology Neovascularization, Pathologic Neovascularization, Pathologic - prevention & control Neurology Real-Time Polymerase Chain Reaction Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger RNA, Messenger - genetics Rodents Tumor Cells, Cultured Tumor Markers, Biological Tumors Tumors of the nervous system. Phacomatoses tumor‐infiltrating myeloid cells |
title | Glioma‐derived galectin‐1 regulates innate and adaptive antitumor immunity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glioma%E2%80%90derived%20galectin%E2%80%901%20regulates%20innate%20and%20adaptive%20antitumor%20immunity&rft.jtitle=International%20journal%20of%20cancer&rft.au=Verschuere,%20Tina&rft.date=2014-02-15&rft.volume=134&rft.issue=4&rft.spage=873&rft.epage=884&rft.pages=873-884&rft.issn=0020-7136&rft.eissn=1097-0215&rft.coden=IJCNAW&rft_id=info:doi/10.1002/ijc.28426&rft_dat=%3Cproquest_hal_p%3E1492631939%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465845445&rft_id=info:pmid/23929302&rfr_iscdi=true |