Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding

Two dry subtractive techniques for the fabrication of microchannels in borosilicate glass were investigated, plasma etching and laser ablation. Inductively coupled plasma reactive ion etching was carried out in a fluorine plasma (C 4 F 8 /O 2 ) using an electroplated Ni mask. Depth up to 100 μm with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microsystem technologies 2010-08, Vol.16 (8-9), p.1485-1493
Hauptverfasser: Queste, S., Salut, R., Clatot, S., Rauch, J.-Y., Khan Malek, Chantal G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1493
container_issue 8-9
container_start_page 1485
container_title Microsystem technologies
container_volume 16
creator Queste, S.
Salut, R.
Clatot, S.
Rauch, J.-Y.
Khan Malek, Chantal G.
description Two dry subtractive techniques for the fabrication of microchannels in borosilicate glass were investigated, plasma etching and laser ablation. Inductively coupled plasma reactive ion etching was carried out in a fluorine plasma (C 4 F 8 /O 2 ) using an electroplated Ni mask. Depth up to 100 μm with a profile angle of 83°–88° and a smooth bottom of the etched structure (Ra below 3 nm) were achieved at an etch rate of 0.9 μm/min. An ultrashort pulse Ti:sapphire laser operating at the wavelength of 800 nm and 5 kHz repetition rate was used for micromachining. Channels of 100 μm width and 140 μm height with a profile angle of 80–85° were obtained in 3 min using an average power of 160 mW and a pulse duration of 120 fs. A novel process for glass–glass anodic bonding using a conductive interlayer of Si/Al/Si has been developed to seal microfluidic components with good optical transparency using a relatively low temperature (350°C).
doi_str_mv 10.1007/s00542-010-1020-1
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00949364v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00949364v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-dc4e76b1b57f6e8c14e526b2df3d74b95dc60524729db6e920c8fa6d0a0cc57d3</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxS1UJLYLH4CbLxwqkTJ2HDs5IlRKpUW9lHM08Z8lKOtEdlJpv31nG8SRy1h-7_dGmsfYtYDvAsDcZYBKyQIEFAIkjTO2EaqUhair-gvbQKN0YcDoC_Y15zegTFOXGxafMS4B7bwkz8fAD71NYxiW3vWW7wfMmdvXfsq8O3Ln_cQn0g7I_Uxy3N_y4A_zmL0do-Nk-cSxG3Dux3jLkTSM42lVRz7xl-w84JD91fu7ZS-PP_48PBW73z9_PdzvCqtEPRfOKm90J7rKBO1rK5SvpO6kC6UzqmsqZzVUUhnZuE77RoKtA2oHCNZWxpVb9m3d-4pDO6X-gOnYjti3T_e79qQBFdKUWv0VxIqVpctzTj58BAS0p3LbtdwW_v8lDcrcrJkJs8UhJIy2zx9BWRJrZE2cXLlMVtz71L6NS4p0-ifL_wFO_YpJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Queste, S. ; Salut, R. ; Clatot, S. ; Rauch, J.-Y. ; Khan Malek, Chantal G.</creator><creatorcontrib>Queste, S. ; Salut, R. ; Clatot, S. ; Rauch, J.-Y. ; Khan Malek, Chantal G.</creatorcontrib><description>Two dry subtractive techniques for the fabrication of microchannels in borosilicate glass were investigated, plasma etching and laser ablation. Inductively coupled plasma reactive ion etching was carried out in a fluorine plasma (C 4 F 8 /O 2 ) using an electroplated Ni mask. Depth up to 100 μm with a profile angle of 83°–88° and a smooth bottom of the etched structure (Ra below 3 nm) were achieved at an etch rate of 0.9 μm/min. An ultrashort pulse Ti:sapphire laser operating at the wavelength of 800 nm and 5 kHz repetition rate was used for micromachining. Channels of 100 μm width and 140 μm height with a profile angle of 80–85° were obtained in 3 min using an average power of 160 mW and a pulse duration of 120 fs. A novel process for glass–glass anodic bonding using a conductive interlayer of Si/Al/Si has been developed to seal microfluidic components with good optical transparency using a relatively low temperature (350°C).</description><identifier>ISSN: 0946-7076</identifier><identifier>EISSN: 1432-1858</identifier><identifier>DOI: 10.1007/s00542-010-1020-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied fluid mechanics ; Applied sciences ; Electronics and Microelectronics ; Engineering ; Engineering Sciences ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Instrumentation ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Machine components ; Mechanical Engineering ; Mechanical engineering. Machine design ; Mechanical instruments, equipment and techniques ; Micromechanical devices and systems ; Nanotechnology ; Optics ; Photonic ; Physics ; Precision engineering, watch making ; Seals and gaskets ; Technical Paper</subject><ispartof>Microsystem technologies, 2010-08, Vol.16 (8-9), p.1485-1493</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-dc4e76b1b57f6e8c14e526b2df3d74b95dc60524729db6e920c8fa6d0a0cc57d3</citedby><cites>FETCH-LOGICAL-c418t-dc4e76b1b57f6e8c14e526b2df3d74b95dc60524729db6e920c8fa6d0a0cc57d3</cites><orcidid>0000-0001-5462-1855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00542-010-1020-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00542-010-1020-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23010728$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00949364$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Queste, S.</creatorcontrib><creatorcontrib>Salut, R.</creatorcontrib><creatorcontrib>Clatot, S.</creatorcontrib><creatorcontrib>Rauch, J.-Y.</creatorcontrib><creatorcontrib>Khan Malek, Chantal G.</creatorcontrib><title>Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding</title><title>Microsystem technologies</title><addtitle>Microsyst Technol</addtitle><description>Two dry subtractive techniques for the fabrication of microchannels in borosilicate glass were investigated, plasma etching and laser ablation. Inductively coupled plasma reactive ion etching was carried out in a fluorine plasma (C 4 F 8 /O 2 ) using an electroplated Ni mask. Depth up to 100 μm with a profile angle of 83°–88° and a smooth bottom of the etched structure (Ra below 3 nm) were achieved at an etch rate of 0.9 μm/min. An ultrashort pulse Ti:sapphire laser operating at the wavelength of 800 nm and 5 kHz repetition rate was used for micromachining. Channels of 100 μm width and 140 μm height with a profile angle of 80–85° were obtained in 3 min using an average power of 160 mW and a pulse duration of 120 fs. A novel process for glass–glass anodic bonding using a conductive interlayer of Si/Al/Si has been developed to seal microfluidic components with good optical transparency using a relatively low temperature (350°C).</description><subject>Applied fluid mechanics</subject><subject>Applied sciences</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Machine components</subject><subject>Mechanical Engineering</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Micromechanical devices and systems</subject><subject>Nanotechnology</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><subject>Precision engineering, watch making</subject><subject>Seals and gaskets</subject><subject>Technical Paper</subject><issn>0946-7076</issn><issn>1432-1858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9P3DAQxS1UJLYLH4CbLxwqkTJ2HDs5IlRKpUW9lHM08Z8lKOtEdlJpv31nG8SRy1h-7_dGmsfYtYDvAsDcZYBKyQIEFAIkjTO2EaqUhair-gvbQKN0YcDoC_Y15zegTFOXGxafMS4B7bwkz8fAD71NYxiW3vWW7wfMmdvXfsq8O3Ln_cQn0g7I_Uxy3N_y4A_zmL0do-Nk-cSxG3Dux3jLkTSM42lVRz7xl-w84JD91fu7ZS-PP_48PBW73z9_PdzvCqtEPRfOKm90J7rKBO1rK5SvpO6kC6UzqmsqZzVUUhnZuE77RoKtA2oHCNZWxpVb9m3d-4pDO6X-gOnYjti3T_e79qQBFdKUWv0VxIqVpctzTj58BAS0p3LbtdwW_v8lDcrcrJkJs8UhJIy2zx9BWRJrZE2cXLlMVtz71L6NS4p0-ifL_wFO_YpJ</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Queste, S.</creator><creator>Salut, R.</creator><creator>Clatot, S.</creator><creator>Rauch, J.-Y.</creator><creator>Khan Malek, Chantal G.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5462-1855</orcidid></search><sort><creationdate>20100801</creationdate><title>Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding</title><author>Queste, S. ; Salut, R. ; Clatot, S. ; Rauch, J.-Y. ; Khan Malek, Chantal G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-dc4e76b1b57f6e8c14e526b2df3d74b95dc60524729db6e920c8fa6d0a0cc57d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied fluid mechanics</topic><topic>Applied sciences</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Machine components</topic><topic>Mechanical Engineering</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Micromechanical devices and systems</topic><topic>Nanotechnology</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><topic>Precision engineering, watch making</topic><topic>Seals and gaskets</topic><topic>Technical Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Queste, S.</creatorcontrib><creatorcontrib>Salut, R.</creatorcontrib><creatorcontrib>Clatot, S.</creatorcontrib><creatorcontrib>Rauch, J.-Y.</creatorcontrib><creatorcontrib>Khan Malek, Chantal G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Microsystem technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Queste, S.</au><au>Salut, R.</au><au>Clatot, S.</au><au>Rauch, J.-Y.</au><au>Khan Malek, Chantal G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding</atitle><jtitle>Microsystem technologies</jtitle><stitle>Microsyst Technol</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>16</volume><issue>8-9</issue><spage>1485</spage><epage>1493</epage><pages>1485-1493</pages><issn>0946-7076</issn><eissn>1432-1858</eissn><abstract>Two dry subtractive techniques for the fabrication of microchannels in borosilicate glass were investigated, plasma etching and laser ablation. Inductively coupled plasma reactive ion etching was carried out in a fluorine plasma (C 4 F 8 /O 2 ) using an electroplated Ni mask. Depth up to 100 μm with a profile angle of 83°–88° and a smooth bottom of the etched structure (Ra below 3 nm) were achieved at an etch rate of 0.9 μm/min. An ultrashort pulse Ti:sapphire laser operating at the wavelength of 800 nm and 5 kHz repetition rate was used for micromachining. Channels of 100 μm width and 140 μm height with a profile angle of 80–85° were obtained in 3 min using an average power of 160 mW and a pulse duration of 120 fs. A novel process for glass–glass anodic bonding using a conductive interlayer of Si/Al/Si has been developed to seal microfluidic components with good optical transparency using a relatively low temperature (350°C).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00542-010-1020-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5462-1855</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0946-7076
ispartof Microsystem technologies, 2010-08, Vol.16 (8-9), p.1485-1493
issn 0946-7076
1432-1858
language eng
recordid cdi_hal_primary_oai_HAL_hal_00949364v1
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Applied fluid mechanics
Applied sciences
Electronics and Microelectronics
Engineering
Engineering Sciences
Exact sciences and technology
Fluid dynamics
Fluidics
Fundamental areas of phenomenology (including applications)
Instrumentation
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Machine components
Mechanical Engineering
Mechanical engineering. Machine design
Mechanical instruments, equipment and techniques
Micromechanical devices and systems
Nanotechnology
Optics
Photonic
Physics
Precision engineering, watch making
Seals and gaskets
Technical Paper
title Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manufacture%20of%20microfluidic%20glass%20chips%20by%20deep%20plasma%20etching,%20femtosecond%20laser%20ablation,%20and%20anodic%20bonding&rft.jtitle=Microsystem%20technologies&rft.au=Queste,%20S.&rft.date=2010-08-01&rft.volume=16&rft.issue=8-9&rft.spage=1485&rft.epage=1493&rft.pages=1485-1493&rft.issn=0946-7076&rft.eissn=1432-1858&rft_id=info:doi/10.1007/s00542-010-1020-1&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00949364v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true