Self-gravity in curved mesh elements

The local character of self-gravity along with the number of spatial dimensions are critical issues when computing the potential and forces inside massive systems like stars and disks. This appears from the discretisation scale where each cell of the numerical grid is a self-interacting body in itse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Celestial mechanics and dynamical astronomy 2014-04, Vol.118 (4), p.299-314
Hauptverfasser: Huré, Jean-Marc, Trova, Audrey, Hersant, Franck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 4
container_start_page 299
container_title Celestial mechanics and dynamical astronomy
container_volume 118
creator Huré, Jean-Marc
Trova, Audrey
Hersant, Franck
description The local character of self-gravity along with the number of spatial dimensions are critical issues when computing the potential and forces inside massive systems like stars and disks. This appears from the discretisation scale where each cell of the numerical grid is a self-interacting body in itself. There is apparently no closed-form expression yet giving the potential of a three-dimensional homogeneous cylindrical or spherical cell, in contrast with the Cartesian case. By using Green’s theorem, we show that the potential integral for such polar-type 3D sectors—initially, a volume integral with singular kernel—can be converted into a regular line-integral running over the lateral contour, thereby generalising a formula already known under axial symmetry. It therefore is a step towards the obtention of another potential/density pair. The new kernel is a finite function of the cell’s shape (with the simplest form in cylindrical geometry), and mixes incomplete elliptic integrals, inverse trigonometric and hyperbolic functions. The contour integral is easy to compute; it is valid in the whole physical space, exterior and interior to the sector itself and works in fact for a wide variety of shapes of astrophysical interest (e.g. sectors of tori or flared discs). This result is suited to easily providing reference solutions, and to reconstructing potential and forces in inhomogeneous systems by superposition. The contour integrals for the 3 components of the acceleration vector are explicitely given.
doi_str_mv 10.1007/s10569-014-9535-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00944232v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671493080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-512a0b65103814382c938db167fd01a7bf7c4dcc3d8a438e96a52e7531fad913</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRsFZ_gLeAHvSwOrMfSfZYilqh4MHel22yaVPyUXeb0v57N0REBPE0MPO878zwEnKN8IAAyaNHkLGigIIqySU9nJARyoRRJZL0lIxAMU6Zkuk5ufB-AwASlByR23dbFXTlzL7cHaOyibLO7W0e1davI1vZ2jY7f0nOClN5e_VVx2Tx_LSYzuj87eV1OpnTTGC8oxKZgWUsEXiKgqcsUzzNlxgnRQ5okmWRZCLPMp6nJoytio1kNpEcC5Mr5GNyP9iuTaW3rqyNO-rWlHo2meu-B6CEYJzte_ZuYLeu_eis3-m69JmtKtPYtvM6LEWhOKTwPypZOJhx6F1vfqGbtnNN-DlQGJ5UacwChQOVudZ7Z4vvYxF0n4Ye0tAhDd2noQ9BwwaND2yzsu6H85-iTzCUiSI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1514169862</pqid></control><display><type>article</type><title>Self-gravity in curved mesh elements</title><source>SpringerNature Journals</source><creator>Huré, Jean-Marc ; Trova, Audrey ; Hersant, Franck</creator><creatorcontrib>Huré, Jean-Marc ; Trova, Audrey ; Hersant, Franck</creatorcontrib><description>The local character of self-gravity along with the number of spatial dimensions are critical issues when computing the potential and forces inside massive systems like stars and disks. This appears from the discretisation scale where each cell of the numerical grid is a self-interacting body in itself. There is apparently no closed-form expression yet giving the potential of a three-dimensional homogeneous cylindrical or spherical cell, in contrast with the Cartesian case. By using Green’s theorem, we show that the potential integral for such polar-type 3D sectors—initially, a volume integral with singular kernel—can be converted into a regular line-integral running over the lateral contour, thereby generalising a formula already known under axial symmetry. It therefore is a step towards the obtention of another potential/density pair. The new kernel is a finite function of the cell’s shape (with the simplest form in cylindrical geometry), and mixes incomplete elliptic integrals, inverse trigonometric and hyperbolic functions. The contour integral is easy to compute; it is valid in the whole physical space, exterior and interior to the sector itself and works in fact for a wide variety of shapes of astrophysical interest (e.g. sectors of tori or flared discs). This result is suited to easily providing reference solutions, and to reconstructing potential and forces in inhomogeneous systems by superposition. The contour integrals for the 3 components of the acceleration vector are explicitely given.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-014-9535-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Astrophysics ; Astrophysics and Astroparticles ; Classical Mechanics ; Density ; Disks ; Dynamical Systems and Ergodic Theory ; Exact solutions ; Geophysics/Geodesy ; Gravity ; Instrumentation and Methods for Astrophysic ; Integrals ; Mathematical analysis ; Mathematical models ; Original Article ; Physics ; Physics and Astronomy ; Sciences of the Universe ; Shape ; Stars &amp; galaxies ; Three dimensional</subject><ispartof>Celestial mechanics and dynamical astronomy, 2014-04, Vol.118 (4), p.299-314</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-512a0b65103814382c938db167fd01a7bf7c4dcc3d8a438e96a52e7531fad913</citedby><cites>FETCH-LOGICAL-c416t-512a0b65103814382c938db167fd01a7bf7c4dcc3d8a438e96a52e7531fad913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10569-014-9535-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10569-014-9535-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00944232$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huré, Jean-Marc</creatorcontrib><creatorcontrib>Trova, Audrey</creatorcontrib><creatorcontrib>Hersant, Franck</creatorcontrib><title>Self-gravity in curved mesh elements</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>The local character of self-gravity along with the number of spatial dimensions are critical issues when computing the potential and forces inside massive systems like stars and disks. This appears from the discretisation scale where each cell of the numerical grid is a self-interacting body in itself. There is apparently no closed-form expression yet giving the potential of a three-dimensional homogeneous cylindrical or spherical cell, in contrast with the Cartesian case. By using Green’s theorem, we show that the potential integral for such polar-type 3D sectors—initially, a volume integral with singular kernel—can be converted into a regular line-integral running over the lateral contour, thereby generalising a formula already known under axial symmetry. It therefore is a step towards the obtention of another potential/density pair. The new kernel is a finite function of the cell’s shape (with the simplest form in cylindrical geometry), and mixes incomplete elliptic integrals, inverse trigonometric and hyperbolic functions. The contour integral is easy to compute; it is valid in the whole physical space, exterior and interior to the sector itself and works in fact for a wide variety of shapes of astrophysical interest (e.g. sectors of tori or flared discs). This result is suited to easily providing reference solutions, and to reconstructing potential and forces in inhomogeneous systems by superposition. The contour integrals for the 3 components of the acceleration vector are explicitely given.</description><subject>Aerospace Technology and Astronautics</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Classical Mechanics</subject><subject>Density</subject><subject>Disks</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Exact solutions</subject><subject>Geophysics/Geodesy</subject><subject>Gravity</subject><subject>Instrumentation and Methods for Astrophysic</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sciences of the Universe</subject><subject>Shape</subject><subject>Stars &amp; galaxies</subject><subject>Three dimensional</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1Lw0AQhhdRsFZ_gLeAHvSwOrMfSfZYilqh4MHel22yaVPyUXeb0v57N0REBPE0MPO878zwEnKN8IAAyaNHkLGigIIqySU9nJARyoRRJZL0lIxAMU6Zkuk5ufB-AwASlByR23dbFXTlzL7cHaOyibLO7W0e1davI1vZ2jY7f0nOClN5e_VVx2Tx_LSYzuj87eV1OpnTTGC8oxKZgWUsEXiKgqcsUzzNlxgnRQ5okmWRZCLPMp6nJoytio1kNpEcC5Mr5GNyP9iuTaW3rqyNO-rWlHo2meu-B6CEYJzte_ZuYLeu_eis3-m69JmtKtPYtvM6LEWhOKTwPypZOJhx6F1vfqGbtnNN-DlQGJ5UacwChQOVudZ7Z4vvYxF0n4Ye0tAhDd2noQ9BwwaND2yzsu6H85-iTzCUiSI</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Huré, Jean-Marc</creator><creator>Trova, Audrey</creator><creator>Hersant, Franck</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope></search><sort><creationdate>20140401</creationdate><title>Self-gravity in curved mesh elements</title><author>Huré, Jean-Marc ; Trova, Audrey ; Hersant, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-512a0b65103814382c938db167fd01a7bf7c4dcc3d8a438e96a52e7531fad913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Classical Mechanics</topic><topic>Density</topic><topic>Disks</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Exact solutions</topic><topic>Geophysics/Geodesy</topic><topic>Gravity</topic><topic>Instrumentation and Methods for Astrophysic</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sciences of the Universe</topic><topic>Shape</topic><topic>Stars &amp; galaxies</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huré, Jean-Marc</creatorcontrib><creatorcontrib>Trova, Audrey</creatorcontrib><creatorcontrib>Hersant, Franck</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huré, Jean-Marc</au><au>Trova, Audrey</au><au>Hersant, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-gravity in curved mesh elements</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>118</volume><issue>4</issue><spage>299</spage><epage>314</epage><pages>299-314</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>The local character of self-gravity along with the number of spatial dimensions are critical issues when computing the potential and forces inside massive systems like stars and disks. This appears from the discretisation scale where each cell of the numerical grid is a self-interacting body in itself. There is apparently no closed-form expression yet giving the potential of a three-dimensional homogeneous cylindrical or spherical cell, in contrast with the Cartesian case. By using Green’s theorem, we show that the potential integral for such polar-type 3D sectors—initially, a volume integral with singular kernel—can be converted into a regular line-integral running over the lateral contour, thereby generalising a formula already known under axial symmetry. It therefore is a step towards the obtention of another potential/density pair. The new kernel is a finite function of the cell’s shape (with the simplest form in cylindrical geometry), and mixes incomplete elliptic integrals, inverse trigonometric and hyperbolic functions. The contour integral is easy to compute; it is valid in the whole physical space, exterior and interior to the sector itself and works in fact for a wide variety of shapes of astrophysical interest (e.g. sectors of tori or flared discs). This result is suited to easily providing reference solutions, and to reconstructing potential and forces in inhomogeneous systems by superposition. The contour integrals for the 3 components of the acceleration vector are explicitely given.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-014-9535-x</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-2958
ispartof Celestial mechanics and dynamical astronomy, 2014-04, Vol.118 (4), p.299-314
issn 0923-2958
1572-9478
language eng
recordid cdi_hal_primary_oai_HAL_hal_00944232v1
source SpringerNature Journals
subjects Aerospace Technology and Astronautics
Astrophysics
Astrophysics and Astroparticles
Classical Mechanics
Density
Disks
Dynamical Systems and Ergodic Theory
Exact solutions
Geophysics/Geodesy
Gravity
Instrumentation and Methods for Astrophysic
Integrals
Mathematical analysis
Mathematical models
Original Article
Physics
Physics and Astronomy
Sciences of the Universe
Shape
Stars & galaxies
Three dimensional
title Self-gravity in curved mesh elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-gravity%20in%20curved%20mesh%20elements&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Hur%C3%A9,%20Jean-Marc&rft.date=2014-04-01&rft.volume=118&rft.issue=4&rft.spage=299&rft.epage=314&rft.pages=299-314&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-014-9535-x&rft_dat=%3Cproquest_hal_p%3E1671493080%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1514169862&rft_id=info:pmid/&rfr_iscdi=true