Self-gravity in curved mesh elements
The local character of self-gravity along with the number of spatial dimensions are critical issues when computing the potential and forces inside massive systems like stars and disks. This appears from the discretisation scale where each cell of the numerical grid is a self-interacting body in itse...
Gespeichert in:
Veröffentlicht in: | Celestial mechanics and dynamical astronomy 2014-04, Vol.118 (4), p.299-314 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | 4 |
container_start_page | 299 |
container_title | Celestial mechanics and dynamical astronomy |
container_volume | 118 |
creator | Huré, Jean-Marc Trova, Audrey Hersant, Franck |
description | The local character of self-gravity along with the number of spatial dimensions are critical issues when computing the potential and forces inside massive systems like stars and disks. This appears from the discretisation scale where each cell of the numerical grid is a self-interacting body in itself. There is apparently no closed-form expression yet giving the potential of a three-dimensional homogeneous cylindrical or spherical cell, in contrast with the Cartesian case. By using Green’s theorem, we show that the potential integral for such polar-type 3D sectors—initially, a volume integral with singular kernel—can be converted into a regular line-integral running over the lateral contour, thereby generalising a formula already known under axial symmetry. It therefore is a step towards the obtention of another potential/density pair. The new kernel is a finite function of the cell’s shape (with the simplest form in cylindrical geometry), and mixes incomplete elliptic integrals, inverse trigonometric and hyperbolic functions. The contour integral is easy to compute; it is valid in the whole physical space, exterior and interior to the sector itself and works in fact for a wide variety of shapes of astrophysical interest (e.g. sectors of tori or flared discs). This result is suited to easily providing reference solutions, and to reconstructing potential and forces in inhomogeneous systems by superposition. The contour integrals for the 3 components of the acceleration vector are explicitely given. |
doi_str_mv | 10.1007/s10569-014-9535-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00944232v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671493080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-512a0b65103814382c938db167fd01a7bf7c4dcc3d8a438e96a52e7531fad913</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRsFZ_gLeAHvSwOrMfSfZYilqh4MHel22yaVPyUXeb0v57N0REBPE0MPO878zwEnKN8IAAyaNHkLGigIIqySU9nJARyoRRJZL0lIxAMU6Zkuk5ufB-AwASlByR23dbFXTlzL7cHaOyibLO7W0e1davI1vZ2jY7f0nOClN5e_VVx2Tx_LSYzuj87eV1OpnTTGC8oxKZgWUsEXiKgqcsUzzNlxgnRQ5okmWRZCLPMp6nJoytio1kNpEcC5Mr5GNyP9iuTaW3rqyNO-rWlHo2meu-B6CEYJzte_ZuYLeu_eis3-m69JmtKtPYtvM6LEWhOKTwPypZOJhx6F1vfqGbtnNN-DlQGJ5UacwChQOVudZ7Z4vvYxF0n4Ye0tAhDd2noQ9BwwaND2yzsu6H85-iTzCUiSI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1514169862</pqid></control><display><type>article</type><title>Self-gravity in curved mesh elements</title><source>SpringerNature Journals</source><creator>Huré, Jean-Marc ; Trova, Audrey ; Hersant, Franck</creator><creatorcontrib>Huré, Jean-Marc ; Trova, Audrey ; Hersant, Franck</creatorcontrib><description>The local character of self-gravity along with the number of spatial dimensions are critical issues when computing the potential and forces inside massive systems like stars and disks. This appears from the discretisation scale where each cell of the numerical grid is a self-interacting body in itself. There is apparently no closed-form expression yet giving the potential of a three-dimensional homogeneous cylindrical or spherical cell, in contrast with the Cartesian case. By using Green’s theorem, we show that the potential integral for such polar-type 3D sectors—initially, a volume integral with singular kernel—can be converted into a regular line-integral running over the lateral contour, thereby generalising a formula already known under axial symmetry. It therefore is a step towards the obtention of another potential/density pair. The new kernel is a finite function of the cell’s shape (with the simplest form in cylindrical geometry), and mixes incomplete elliptic integrals, inverse trigonometric and hyperbolic functions. The contour integral is easy to compute; it is valid in the whole physical space, exterior and interior to the sector itself and works in fact for a wide variety of shapes of astrophysical interest (e.g. sectors of tori or flared discs). This result is suited to easily providing reference solutions, and to reconstructing potential and forces in inhomogeneous systems by superposition. The contour integrals for the 3 components of the acceleration vector are explicitely given.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-014-9535-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Astrophysics ; Astrophysics and Astroparticles ; Classical Mechanics ; Density ; Disks ; Dynamical Systems and Ergodic Theory ; Exact solutions ; Geophysics/Geodesy ; Gravity ; Instrumentation and Methods for Astrophysic ; Integrals ; Mathematical analysis ; Mathematical models ; Original Article ; Physics ; Physics and Astronomy ; Sciences of the Universe ; Shape ; Stars & galaxies ; Three dimensional</subject><ispartof>Celestial mechanics and dynamical astronomy, 2014-04, Vol.118 (4), p.299-314</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-512a0b65103814382c938db167fd01a7bf7c4dcc3d8a438e96a52e7531fad913</citedby><cites>FETCH-LOGICAL-c416t-512a0b65103814382c938db167fd01a7bf7c4dcc3d8a438e96a52e7531fad913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10569-014-9535-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10569-014-9535-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00944232$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huré, Jean-Marc</creatorcontrib><creatorcontrib>Trova, Audrey</creatorcontrib><creatorcontrib>Hersant, Franck</creatorcontrib><title>Self-gravity in curved mesh elements</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>The local character of self-gravity along with the number of spatial dimensions are critical issues when computing the potential and forces inside massive systems like stars and disks. This appears from the discretisation scale where each cell of the numerical grid is a self-interacting body in itself. There is apparently no closed-form expression yet giving the potential of a three-dimensional homogeneous cylindrical or spherical cell, in contrast with the Cartesian case. By using Green’s theorem, we show that the potential integral for such polar-type 3D sectors—initially, a volume integral with singular kernel—can be converted into a regular line-integral running over the lateral contour, thereby generalising a formula already known under axial symmetry. It therefore is a step towards the obtention of another potential/density pair. The new kernel is a finite function of the cell’s shape (with the simplest form in cylindrical geometry), and mixes incomplete elliptic integrals, inverse trigonometric and hyperbolic functions. The contour integral is easy to compute; it is valid in the whole physical space, exterior and interior to the sector itself and works in fact for a wide variety of shapes of astrophysical interest (e.g. sectors of tori or flared discs). This result is suited to easily providing reference solutions, and to reconstructing potential and forces in inhomogeneous systems by superposition. The contour integrals for the 3 components of the acceleration vector are explicitely given.</description><subject>Aerospace Technology and Astronautics</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Classical Mechanics</subject><subject>Density</subject><subject>Disks</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Exact solutions</subject><subject>Geophysics/Geodesy</subject><subject>Gravity</subject><subject>Instrumentation and Methods for Astrophysic</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sciences of the Universe</subject><subject>Shape</subject><subject>Stars & galaxies</subject><subject>Three dimensional</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1Lw0AQhhdRsFZ_gLeAHvSwOrMfSfZYilqh4MHel22yaVPyUXeb0v57N0REBPE0MPO878zwEnKN8IAAyaNHkLGigIIqySU9nJARyoRRJZL0lIxAMU6Zkuk5ufB-AwASlByR23dbFXTlzL7cHaOyibLO7W0e1davI1vZ2jY7f0nOClN5e_VVx2Tx_LSYzuj87eV1OpnTTGC8oxKZgWUsEXiKgqcsUzzNlxgnRQ5okmWRZCLPMp6nJoytio1kNpEcC5Mr5GNyP9iuTaW3rqyNO-rWlHo2meu-B6CEYJzte_ZuYLeu_eis3-m69JmtKtPYtvM6LEWhOKTwPypZOJhx6F1vfqGbtnNN-DlQGJ5UacwChQOVudZ7Z4vvYxF0n4Ye0tAhDd2noQ9BwwaND2yzsu6H85-iTzCUiSI</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Huré, Jean-Marc</creator><creator>Trova, Audrey</creator><creator>Hersant, Franck</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope></search><sort><creationdate>20140401</creationdate><title>Self-gravity in curved mesh elements</title><author>Huré, Jean-Marc ; Trova, Audrey ; Hersant, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-512a0b65103814382c938db167fd01a7bf7c4dcc3d8a438e96a52e7531fad913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Classical Mechanics</topic><topic>Density</topic><topic>Disks</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Exact solutions</topic><topic>Geophysics/Geodesy</topic><topic>Gravity</topic><topic>Instrumentation and Methods for Astrophysic</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sciences of the Universe</topic><topic>Shape</topic><topic>Stars & galaxies</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huré, Jean-Marc</creatorcontrib><creatorcontrib>Trova, Audrey</creatorcontrib><creatorcontrib>Hersant, Franck</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huré, Jean-Marc</au><au>Trova, Audrey</au><au>Hersant, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-gravity in curved mesh elements</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>118</volume><issue>4</issue><spage>299</spage><epage>314</epage><pages>299-314</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>The local character of self-gravity along with the number of spatial dimensions are critical issues when computing the potential and forces inside massive systems like stars and disks. This appears from the discretisation scale where each cell of the numerical grid is a self-interacting body in itself. There is apparently no closed-form expression yet giving the potential of a three-dimensional homogeneous cylindrical or spherical cell, in contrast with the Cartesian case. By using Green’s theorem, we show that the potential integral for such polar-type 3D sectors—initially, a volume integral with singular kernel—can be converted into a regular line-integral running over the lateral contour, thereby generalising a formula already known under axial symmetry. It therefore is a step towards the obtention of another potential/density pair. The new kernel is a finite function of the cell’s shape (with the simplest form in cylindrical geometry), and mixes incomplete elliptic integrals, inverse trigonometric and hyperbolic functions. The contour integral is easy to compute; it is valid in the whole physical space, exterior and interior to the sector itself and works in fact for a wide variety of shapes of astrophysical interest (e.g. sectors of tori or flared discs). This result is suited to easily providing reference solutions, and to reconstructing potential and forces in inhomogeneous systems by superposition. The contour integrals for the 3 components of the acceleration vector are explicitely given.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-014-9535-x</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-2958 |
ispartof | Celestial mechanics and dynamical astronomy, 2014-04, Vol.118 (4), p.299-314 |
issn | 0923-2958 1572-9478 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00944232v1 |
source | SpringerNature Journals |
subjects | Aerospace Technology and Astronautics Astrophysics Astrophysics and Astroparticles Classical Mechanics Density Disks Dynamical Systems and Ergodic Theory Exact solutions Geophysics/Geodesy Gravity Instrumentation and Methods for Astrophysic Integrals Mathematical analysis Mathematical models Original Article Physics Physics and Astronomy Sciences of the Universe Shape Stars & galaxies Three dimensional |
title | Self-gravity in curved mesh elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-gravity%20in%20curved%20mesh%20elements&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Hur%C3%A9,%20Jean-Marc&rft.date=2014-04-01&rft.volume=118&rft.issue=4&rft.spage=299&rft.epage=314&rft.pages=299-314&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-014-9535-x&rft_dat=%3Cproquest_hal_p%3E1671493080%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1514169862&rft_id=info:pmid/&rfr_iscdi=true |