Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range

This paper presents a study of transport parameters (diffusion, dynamic permeability, thermal permeability, trapping constant) of porous media by combining the homogenization of periodic media (HPM) and the self-consistent scheme (SCM) based on a bicomposite spherical pattern. The link between the H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2010-09, Vol.82 (3 Pt 2), p.036313-036313, Article 036313
Hauptverfasser: Boutin, Claude, Geindreau, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 036313
container_issue 3 Pt 2
container_start_page 036313
container_title Physical review. E
container_volume 82
creator Boutin, Claude
Geindreau, Christian
description This paper presents a study of transport parameters (diffusion, dynamic permeability, thermal permeability, trapping constant) of porous media by combining the homogenization of periodic media (HPM) and the self-consistent scheme (SCM) based on a bicomposite spherical pattern. The link between the HPM and SCM approaches is first established by using a systematic argument independent of the problem under consideration. It is shown that the periodicity condition can be replaced by zero flux and energy through the whole surface of the representative elementary volume. Consequently the SCM solution can be considered as a geometrical approximation of the local problem derived through HPM for materials such that the morphology of the period is "close" to the SCM pattern. These results are then applied to derive the estimates of the effective diffusion, the dynamic permeability, the thermal permeability and the trapping constant of porous media. These SCM estimates are compared with numerical HPM results obtained on periodic arrays of spheres and polyhedrons. It is shown that SCM estimates provide good analytical approximations of the effective parameters for periodic packings of spheres at porosities larger than 0.6, while the agreement is excellent for periodic packings of polyhedrons in the whole range of porosity.
doi_str_mv 10.1103/PhysRevE.82.036313
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00943731v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>840353127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-4c23102fa01126e13dd17fffe5e82867e08a94cf63564b971ce2b10e584aceac3</originalsourceid><addsrcrecordid>eNo9kcFu1DAQhiMEoqXwAhyQb6iHLB5PEifHqmop0kpUVTlbXmeyMSR2sL2tllfgpfGybU9jjb7_k8Z_UXwEvgLg-OV23Mc7erhatWLFsUHAV8Up1DUvBcrm9eGNXYmyrk-KdzH-5BwFttXb4kSAQA5SnhZ_bylY31vDRj_7LTn7RyfrHdOuZ8a7aGMilxjFZGedKDI_sBS0i4sPiS066JkShcjSGPxuO7K4jBTof37x036kPmTdos0v67aRWZdJYo-jnygDwUeb9iwLt_S-eDPoKdKHp3lW_Li-ur-8Kdffv367vFiXphJdKisjELgYNAcQDQH2PchhGKimVrSNJN7qrjJDg3VTbToJhsQGONVtpQ1pg2fF-dE76kktId8V9sprq24u1uqw47yrUCI8QGY_H9kl-N-7_AtqttHQNGlHfhdVW3GsEYTMpDiSJt8UAw0vauDq0Jd67ku1Qh37yqFPT_rdZqb-JfJcEP4DareWMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>840353127</pqid></control><display><type>article</type><title>Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range</title><source>American Physical Society Journals</source><creator>Boutin, Claude ; Geindreau, Christian</creator><creatorcontrib>Boutin, Claude ; Geindreau, Christian</creatorcontrib><description>This paper presents a study of transport parameters (diffusion, dynamic permeability, thermal permeability, trapping constant) of porous media by combining the homogenization of periodic media (HPM) and the self-consistent scheme (SCM) based on a bicomposite spherical pattern. The link between the HPM and SCM approaches is first established by using a systematic argument independent of the problem under consideration. It is shown that the periodicity condition can be replaced by zero flux and energy through the whole surface of the representative elementary volume. Consequently the SCM solution can be considered as a geometrical approximation of the local problem derived through HPM for materials such that the morphology of the period is "close" to the SCM pattern. These results are then applied to derive the estimates of the effective diffusion, the dynamic permeability, the thermal permeability and the trapping constant of porous media. These SCM estimates are compared with numerical HPM results obtained on periodic arrays of spheres and polyhedrons. It is shown that SCM estimates provide good analytical approximations of the effective parameters for periodic packings of spheres at porosities larger than 0.6, while the agreement is excellent for periodic packings of polyhedrons in the whole range of porosity.</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 1550-2376</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.82.036313</identifier><identifier>PMID: 21230177</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Engineering Sciences ; Mechanics</subject><ispartof>Physical review. E, 2010-09, Vol.82 (3 Pt 2), p.036313-036313, Article 036313</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-4c23102fa01126e13dd17fffe5e82867e08a94cf63564b971ce2b10e584aceac3</citedby><cites>FETCH-LOGICAL-c429t-4c23102fa01126e13dd17fffe5e82867e08a94cf63564b971ce2b10e584aceac3</cites><orcidid>0000-0002-6899-4879 ; 0000-0002-7743-4777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21230177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00943731$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boutin, Claude</creatorcontrib><creatorcontrib>Geindreau, Christian</creatorcontrib><title>Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range</title><title>Physical review. E</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>This paper presents a study of transport parameters (diffusion, dynamic permeability, thermal permeability, trapping constant) of porous media by combining the homogenization of periodic media (HPM) and the self-consistent scheme (SCM) based on a bicomposite spherical pattern. The link between the HPM and SCM approaches is first established by using a systematic argument independent of the problem under consideration. It is shown that the periodicity condition can be replaced by zero flux and energy through the whole surface of the representative elementary volume. Consequently the SCM solution can be considered as a geometrical approximation of the local problem derived through HPM for materials such that the morphology of the period is "close" to the SCM pattern. These results are then applied to derive the estimates of the effective diffusion, the dynamic permeability, the thermal permeability and the trapping constant of porous media. These SCM estimates are compared with numerical HPM results obtained on periodic arrays of spheres and polyhedrons. It is shown that SCM estimates provide good analytical approximations of the effective parameters for periodic packings of spheres at porosities larger than 0.6, while the agreement is excellent for periodic packings of polyhedrons in the whole range of porosity.</description><subject>Engineering Sciences</subject><subject>Mechanics</subject><issn>1539-3755</issn><issn>2470-0045</issn><issn>1550-2376</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kcFu1DAQhiMEoqXwAhyQb6iHLB5PEifHqmop0kpUVTlbXmeyMSR2sL2tllfgpfGybU9jjb7_k8Z_UXwEvgLg-OV23Mc7erhatWLFsUHAV8Up1DUvBcrm9eGNXYmyrk-KdzH-5BwFttXb4kSAQA5SnhZ_bylY31vDRj_7LTn7RyfrHdOuZ8a7aGMilxjFZGedKDI_sBS0i4sPiS066JkShcjSGPxuO7K4jBTof37x036kPmTdos0v67aRWZdJYo-jnygDwUeb9iwLt_S-eDPoKdKHp3lW_Li-ur-8Kdffv367vFiXphJdKisjELgYNAcQDQH2PchhGKimVrSNJN7qrjJDg3VTbToJhsQGONVtpQ1pg2fF-dE76kktId8V9sprq24u1uqw47yrUCI8QGY_H9kl-N-7_AtqttHQNGlHfhdVW3GsEYTMpDiSJt8UAw0vauDq0Jd67ku1Qh37yqFPT_rdZqb-JfJcEP4DareWMQ</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Boutin, Claude</creator><creator>Geindreau, Christian</creator><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6899-4879</orcidid><orcidid>https://orcid.org/0000-0002-7743-4777</orcidid></search><sort><creationdate>201009</creationdate><title>Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range</title><author>Boutin, Claude ; Geindreau, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-4c23102fa01126e13dd17fffe5e82867e08a94cf63564b971ce2b10e584aceac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Engineering Sciences</topic><topic>Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boutin, Claude</creatorcontrib><creatorcontrib>Geindreau, Christian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boutin, Claude</au><au>Geindreau, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2010-09</date><risdate>2010</risdate><volume>82</volume><issue>3 Pt 2</issue><spage>036313</spage><epage>036313</epage><pages>036313-036313</pages><artnum>036313</artnum><issn>1539-3755</issn><issn>2470-0045</issn><eissn>1550-2376</eissn><eissn>2470-0053</eissn><abstract>This paper presents a study of transport parameters (diffusion, dynamic permeability, thermal permeability, trapping constant) of porous media by combining the homogenization of periodic media (HPM) and the self-consistent scheme (SCM) based on a bicomposite spherical pattern. The link between the HPM and SCM approaches is first established by using a systematic argument independent of the problem under consideration. It is shown that the periodicity condition can be replaced by zero flux and energy through the whole surface of the representative elementary volume. Consequently the SCM solution can be considered as a geometrical approximation of the local problem derived through HPM for materials such that the morphology of the period is "close" to the SCM pattern. These results are then applied to derive the estimates of the effective diffusion, the dynamic permeability, the thermal permeability and the trapping constant of porous media. These SCM estimates are compared with numerical HPM results obtained on periodic arrays of spheres and polyhedrons. It is shown that SCM estimates provide good analytical approximations of the effective parameters for periodic packings of spheres at porosities larger than 0.6, while the agreement is excellent for periodic packings of polyhedrons in the whole range of porosity.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>21230177</pmid><doi>10.1103/PhysRevE.82.036313</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6899-4879</orcidid><orcidid>https://orcid.org/0000-0002-7743-4777</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, 2010-09, Vol.82 (3 Pt 2), p.036313-036313, Article 036313
issn 1539-3755
2470-0045
1550-2376
2470-0053
language eng
recordid cdi_hal_primary_oai_HAL_hal_00943731v1
source American Physical Society Journals
subjects Engineering Sciences
Mechanics
title Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20homogenization%20and%20consistent%20estimates%20of%20transport%20parameters%20through%20sphere%20and%20polyhedron%20packings%20in%20the%20whole%20porosity%20range&rft.jtitle=Physical%20review.%20E&rft.au=Boutin,%20Claude&rft.date=2010-09&rft.volume=82&rft.issue=3%20Pt%202&rft.spage=036313&rft.epage=036313&rft.pages=036313-036313&rft.artnum=036313&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.82.036313&rft_dat=%3Cproquest_hal_p%3E840353127%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=840353127&rft_id=info:pmid/21230177&rfr_iscdi=true