Stability notions and Lyapunov functions for sliding mode control systems

The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Franklin Institute 2014-04, Vol.351 (4), p.1831-1865
Hauptverfasser: Polyakov, Andrey, Fridman, Leonid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1865
container_issue 4
container_start_page 1831
container_title Journal of the Franklin Institute
container_volume 351
creator Polyakov, Andrey
Fridman, Leonid
description The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are considered. The generalized Lyapunov theorems for stability analysis and convergence time estimation are presented and supported by examples from sliding mode control theory.
doi_str_mv 10.1016/j.jfranklin.2014.01.002
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00942319v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003214000040</els_id><sourcerecordid>oai_HAL_hal_00942319v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-1663ee8f08e1701ac47039227af15f62372e5ca3a29e9893215dcddf8e4db8de3</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKe_wb760HqTdG3zOIa6QcEH9TlkyY2mdslIukH_vR0TX326nMN3DtxDyD2FggKtHruis1H57975ggEtC6AFALsgM9rUImeV4JdkBhOaA3B2TW5S6iZZU4AZ2bwNaut6N4yZD4MLPmXKm6wd1f7gwzGzB6_Ptg0xS70zzn9mu2Aw08EPMfRZGtOAu3RLrqzqE9793jn5eH56X63z9vVls1q2ueaiGXJaVRyxsdAgrYEqXdbABWO1snRhK8ZrhgutuGICRSM4owujjbENlmbbGORz8nDu_VK93Ee3U3GUQTm5Xrby5AGIknEqjnRi6zOrY0gpov0LUJCn9WQn_9aTp_Uk0KmATcnlOYnTK0eHUSbt0Gs0LqIepAnu344f3hB9bw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability notions and Lyapunov functions for sliding mode control systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Polyakov, Andrey ; Fridman, Leonid</creator><creatorcontrib>Polyakov, Andrey ; Fridman, Leonid</creatorcontrib><description>The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are considered. The generalized Lyapunov theorems for stability analysis and convergence time estimation are presented and supported by examples from sliding mode control theory.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>DOI: 10.1016/j.jfranklin.2014.01.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic Control Engineering ; Computer Science</subject><ispartof>Journal of the Franklin Institute, 2014-04, Vol.351 (4), p.1831-1865</ispartof><rights>2014 The Franklin Institute</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-1663ee8f08e1701ac47039227af15f62372e5ca3a29e9893215dcddf8e4db8de3</citedby><cites>FETCH-LOGICAL-c398t-1663ee8f08e1701ac47039227af15f62372e5ca3a29e9893215dcddf8e4db8de3</cites><orcidid>0000-0002-5876-3495 ; 0000-0003-0208-3615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2014.01.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00942319$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Polyakov, Andrey</creatorcontrib><creatorcontrib>Fridman, Leonid</creatorcontrib><title>Stability notions and Lyapunov functions for sliding mode control systems</title><title>Journal of the Franklin Institute</title><description>The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are considered. The generalized Lyapunov theorems for stability analysis and convergence time estimation are presented and supported by examples from sliding mode control theory.</description><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><issn>0016-0032</issn><issn>1879-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKe_wb760HqTdG3zOIa6QcEH9TlkyY2mdslIukH_vR0TX326nMN3DtxDyD2FggKtHruis1H57975ggEtC6AFALsgM9rUImeV4JdkBhOaA3B2TW5S6iZZU4AZ2bwNaut6N4yZD4MLPmXKm6wd1f7gwzGzB6_Ptg0xS70zzn9mu2Aw08EPMfRZGtOAu3RLrqzqE9793jn5eH56X63z9vVls1q2ueaiGXJaVRyxsdAgrYEqXdbABWO1snRhK8ZrhgutuGICRSM4owujjbENlmbbGORz8nDu_VK93Ee3U3GUQTm5Xrby5AGIknEqjnRi6zOrY0gpov0LUJCn9WQn_9aTp_Uk0KmATcnlOYnTK0eHUSbt0Gs0LqIepAnu344f3hB9bw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Polyakov, Andrey</creator><creator>Fridman, Leonid</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5876-3495</orcidid><orcidid>https://orcid.org/0000-0003-0208-3615</orcidid></search><sort><creationdate>20140401</creationdate><title>Stability notions and Lyapunov functions for sliding mode control systems</title><author>Polyakov, Andrey ; Fridman, Leonid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-1663ee8f08e1701ac47039227af15f62372e5ca3a29e9893215dcddf8e4db8de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polyakov, Andrey</creatorcontrib><creatorcontrib>Fridman, Leonid</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polyakov, Andrey</au><au>Fridman, Leonid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability notions and Lyapunov functions for sliding mode control systems</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>351</volume><issue>4</issue><spage>1831</spage><epage>1865</epage><pages>1831-1865</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><abstract>The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are considered. The generalized Lyapunov theorems for stability analysis and convergence time estimation are presented and supported by examples from sliding mode control theory.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2014.01.002</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-5876-3495</orcidid><orcidid>https://orcid.org/0000-0003-0208-3615</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2014-04, Vol.351 (4), p.1831-1865
issn 0016-0032
1879-2693
language eng
recordid cdi_hal_primary_oai_HAL_hal_00942319v1
source ScienceDirect Journals (5 years ago - present)
subjects Automatic Control Engineering
Computer Science
title Stability notions and Lyapunov functions for sliding mode control systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20notions%20and%20Lyapunov%20functions%20for%20sliding%20mode%20control%20systems&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Polyakov,%20Andrey&rft.date=2014-04-01&rft.volume=351&rft.issue=4&rft.spage=1831&rft.epage=1865&rft.pages=1831-1865&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2014.01.002&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00942319v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0016003214000040&rfr_iscdi=true