Stability notions and Lyapunov functions for sliding mode control systems
The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2014-04, Vol.351 (4), p.1831-1865 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1865 |
---|---|
container_issue | 4 |
container_start_page | 1831 |
container_title | Journal of the Franklin Institute |
container_volume | 351 |
creator | Polyakov, Andrey Fridman, Leonid |
description | The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are considered. The generalized Lyapunov theorems for stability analysis and convergence time estimation are presented and supported by examples from sliding mode control theory. |
doi_str_mv | 10.1016/j.jfranklin.2014.01.002 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00942319v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003214000040</els_id><sourcerecordid>oai_HAL_hal_00942319v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-1663ee8f08e1701ac47039227af15f62372e5ca3a29e9893215dcddf8e4db8de3</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKe_wb760HqTdG3zOIa6QcEH9TlkyY2mdslIukH_vR0TX326nMN3DtxDyD2FggKtHruis1H57975ggEtC6AFALsgM9rUImeV4JdkBhOaA3B2TW5S6iZZU4AZ2bwNaut6N4yZD4MLPmXKm6wd1f7gwzGzB6_Ptg0xS70zzn9mu2Aw08EPMfRZGtOAu3RLrqzqE9793jn5eH56X63z9vVls1q2ueaiGXJaVRyxsdAgrYEqXdbABWO1snRhK8ZrhgutuGICRSM4owujjbENlmbbGORz8nDu_VK93Ee3U3GUQTm5Xrby5AGIknEqjnRi6zOrY0gpov0LUJCn9WQn_9aTp_Uk0KmATcnlOYnTK0eHUSbt0Gs0LqIepAnu344f3hB9bw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability notions and Lyapunov functions for sliding mode control systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Polyakov, Andrey ; Fridman, Leonid</creator><creatorcontrib>Polyakov, Andrey ; Fridman, Leonid</creatorcontrib><description>The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are considered. The generalized Lyapunov theorems for stability analysis and convergence time estimation are presented and supported by examples from sliding mode control theory.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>DOI: 10.1016/j.jfranklin.2014.01.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic Control Engineering ; Computer Science</subject><ispartof>Journal of the Franklin Institute, 2014-04, Vol.351 (4), p.1831-1865</ispartof><rights>2014 The Franklin Institute</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-1663ee8f08e1701ac47039227af15f62372e5ca3a29e9893215dcddf8e4db8de3</citedby><cites>FETCH-LOGICAL-c398t-1663ee8f08e1701ac47039227af15f62372e5ca3a29e9893215dcddf8e4db8de3</cites><orcidid>0000-0002-5876-3495 ; 0000-0003-0208-3615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2014.01.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00942319$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Polyakov, Andrey</creatorcontrib><creatorcontrib>Fridman, Leonid</creatorcontrib><title>Stability notions and Lyapunov functions for sliding mode control systems</title><title>Journal of the Franklin Institute</title><description>The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are considered. The generalized Lyapunov theorems for stability analysis and convergence time estimation are presented and supported by examples from sliding mode control theory.</description><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><issn>0016-0032</issn><issn>1879-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKe_wb760HqTdG3zOIa6QcEH9TlkyY2mdslIukH_vR0TX326nMN3DtxDyD2FggKtHruis1H57975ggEtC6AFALsgM9rUImeV4JdkBhOaA3B2TW5S6iZZU4AZ2bwNaut6N4yZD4MLPmXKm6wd1f7gwzGzB6_Ptg0xS70zzn9mu2Aw08EPMfRZGtOAu3RLrqzqE9793jn5eH56X63z9vVls1q2ueaiGXJaVRyxsdAgrYEqXdbABWO1snRhK8ZrhgutuGICRSM4owujjbENlmbbGORz8nDu_VK93Ee3U3GUQTm5Xrby5AGIknEqjnRi6zOrY0gpov0LUJCn9WQn_9aTp_Uk0KmATcnlOYnTK0eHUSbt0Gs0LqIepAnu344f3hB9bw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Polyakov, Andrey</creator><creator>Fridman, Leonid</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5876-3495</orcidid><orcidid>https://orcid.org/0000-0003-0208-3615</orcidid></search><sort><creationdate>20140401</creationdate><title>Stability notions and Lyapunov functions for sliding mode control systems</title><author>Polyakov, Andrey ; Fridman, Leonid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-1663ee8f08e1701ac47039227af15f62372e5ca3a29e9893215dcddf8e4db8de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polyakov, Andrey</creatorcontrib><creatorcontrib>Fridman, Leonid</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polyakov, Andrey</au><au>Fridman, Leonid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability notions and Lyapunov functions for sliding mode control systems</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>351</volume><issue>4</issue><spage>1831</spage><epage>1865</epage><pages>1831-1865</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><abstract>The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are considered. The generalized Lyapunov theorems for stability analysis and convergence time estimation are presented and supported by examples from sliding mode control theory.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2014.01.002</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-5876-3495</orcidid><orcidid>https://orcid.org/0000-0003-0208-3615</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2014-04, Vol.351 (4), p.1831-1865 |
issn | 0016-0032 1879-2693 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00942319v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Automatic Control Engineering Computer Science |
title | Stability notions and Lyapunov functions for sliding mode control systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20notions%20and%20Lyapunov%20functions%20for%20sliding%20mode%20control%20systems&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Polyakov,%20Andrey&rft.date=2014-04-01&rft.volume=351&rft.issue=4&rft.spage=1831&rft.epage=1865&rft.pages=1831-1865&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2014.01.002&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00942319v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0016003214000040&rfr_iscdi=true |