Low temperature reaction kinetics of CN−+HC3N and implications for the growth of anions in Titan’s atmosphere

•The reactivity of CN−, proposed to be abundant in Titan’s ionosphere, is explored.•The CN−+HC3N reaction is investigated down to 50K with the CRESU method.•The kinetics of the CN−+HC3N reaction is fast and weakly temperature dependent.•The main exit channel of the CN−+HC3N reaction is HCN+C3N−.•The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2014-01, Vol.227, p.123-131
Hauptverfasser: Biennier, Ludovic, Carles, Sophie, Cordier, Daniel, Guillemin, Jean-Claude, Le Picard, Sébastien D., Faure, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue
container_start_page 123
container_title Icarus (New York, N.Y. 1962)
container_volume 227
creator Biennier, Ludovic
Carles, Sophie
Cordier, Daniel
Guillemin, Jean-Claude
Le Picard, Sébastien D.
Faure, Alexandre
description •The reactivity of CN−, proposed to be abundant in Titan’s ionosphere, is explored.•The CN−+HC3N reaction is investigated down to 50K with the CRESU method.•The kinetics of the CN−+HC3N reaction is fast and weakly temperature dependent.•The main exit channel of the CN−+HC3N reaction is HCN+C3N−.•The CN−+HC3N reaction participates to the growth of anions in Titan’s ionosphere. The Cassini–Huygens probe has uncovered the existence of a profusion of negatively charged molecular species in the upper atmosphere of Titan (∼950km). The presence of large amounts of anions was unexpected and the chemical pathways leading to their formation mostly unknown. The investigation of the negative ion chemistry appears therefore to be a key factor for modeling Titan’s upper atmosphere. We present here the first low temperature experimental kinetic study involving CN−, proposed by Vuitton et al. (2009) to be one of the negative ions detected by the CAPS-ELS instrument onboard the Cassini spacecraft. The temperature dependence of the rate coefficient of the reaction CN−+HC3N, was explored over the 49–294K temperature range in uniform supersonic flows using the CRESU technique. We find that the kinetics of this reaction is fast (k≳4×10−9cm3molecule−1s−1) and presents a weak negative temperature dependence which, considering the experimental error bars, agrees with long-range based capture theory. We also observe that C3N−+HCN represents the main exit channel demonstrating that the studied reaction participates efficiently to the chemical growth of negative ions in the atmosphere of Titan.
doi_str_mv 10.1016/j.icarus.2013.09.004
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00940997v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103513003825</els_id><sourcerecordid>oai_HAL_hal_00940997v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-cffc5856d67c73d806e2f3a800eac6ef82f218835769fd8e386f6d736aeb64113</originalsourceid><addsrcrecordid>eNp9kLFO5DAQhi0EEgvcG1C4RShhHCeO3SCh1R2LtIIGasvnjFkvu_FiG9B1V15Nx-vxJCQsupJqpJnv_2fmJ-SYQcmAibNl6a2JT6msgPESVAlQ75AJAwVFJWq-SyYATBUMeLNPDlJaAkAjFZ-Qx3l4oRnXG4wmP0WkEY3NPvT0wfeYvU00ODq9fv_3ejqb8mtq-o769WY1bByxRF2INC-Q3sfwkhcjbfrPge_prc-mf__7lqjJ65A2C4x4RPacWSX88VUPyd2vn7fTWTG_ubyaXswLy2vIhXXONrIRnWhtyzsJAivHjQQYDhToZOUqJiVvWqFcJ5FL4UTXcmHwt6gZ44fkZOu7MCu9iX5t4h8djNezi7keewCqBqXa55Gtt6yNIaWI7r-AgR4j1ku9jViPEWtQg7oeZOdbGQ5_PHuMOlmPvcXOR7RZd8F_b_ABvtKJKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low temperature reaction kinetics of CN−+HC3N and implications for the growth of anions in Titan’s atmosphere</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Biennier, Ludovic ; Carles, Sophie ; Cordier, Daniel ; Guillemin, Jean-Claude ; Le Picard, Sébastien D. ; Faure, Alexandre</creator><creatorcontrib>Biennier, Ludovic ; Carles, Sophie ; Cordier, Daniel ; Guillemin, Jean-Claude ; Le Picard, Sébastien D. ; Faure, Alexandre</creatorcontrib><description>•The reactivity of CN−, proposed to be abundant in Titan’s ionosphere, is explored.•The CN−+HC3N reaction is investigated down to 50K with the CRESU method.•The kinetics of the CN−+HC3N reaction is fast and weakly temperature dependent.•The main exit channel of the CN−+HC3N reaction is HCN+C3N−.•The CN−+HC3N reaction participates to the growth of anions in Titan’s ionosphere. The Cassini–Huygens probe has uncovered the existence of a profusion of negatively charged molecular species in the upper atmosphere of Titan (∼950km). The presence of large amounts of anions was unexpected and the chemical pathways leading to their formation mostly unknown. The investigation of the negative ion chemistry appears therefore to be a key factor for modeling Titan’s upper atmosphere. We present here the first low temperature experimental kinetic study involving CN−, proposed by Vuitton et al. (2009) to be one of the negative ions detected by the CAPS-ELS instrument onboard the Cassini spacecraft. The temperature dependence of the rate coefficient of the reaction CN−+HC3N, was explored over the 49–294K temperature range in uniform supersonic flows using the CRESU technique. We find that the kinetics of this reaction is fast (k≳4×10−9cm3molecule−1s−1) and presents a weak negative temperature dependence which, considering the experimental error bars, agrees with long-range based capture theory. We also observe that C3N−+HCN represents the main exit channel demonstrating that the studied reaction participates efficiently to the chemical growth of negative ions in the atmosphere of Titan.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2013.09.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Astrophysics ; Atmospheres, chemistry ; Chemical Physics ; Ionospheres ; Physics ; Sciences of the Universe ; Titan, atmosphere</subject><ispartof>Icarus (New York, N.Y. 1962), 2014-01, Vol.227, p.123-131</ispartof><rights>2013 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-cffc5856d67c73d806e2f3a800eac6ef82f218835769fd8e386f6d736aeb64113</citedby><cites>FETCH-LOGICAL-c340t-cffc5856d67c73d806e2f3a800eac6ef82f218835769fd8e386f6d736aeb64113</cites><orcidid>0000-0001-7819-0754 ; 0000-0002-3753-4431 ; 0000-0001-7199-2535 ; 0000-0001-7750-3042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.icarus.2013.09.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00940997$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Biennier, Ludovic</creatorcontrib><creatorcontrib>Carles, Sophie</creatorcontrib><creatorcontrib>Cordier, Daniel</creatorcontrib><creatorcontrib>Guillemin, Jean-Claude</creatorcontrib><creatorcontrib>Le Picard, Sébastien D.</creatorcontrib><creatorcontrib>Faure, Alexandre</creatorcontrib><title>Low temperature reaction kinetics of CN−+HC3N and implications for the growth of anions in Titan’s atmosphere</title><title>Icarus (New York, N.Y. 1962)</title><description>•The reactivity of CN−, proposed to be abundant in Titan’s ionosphere, is explored.•The CN−+HC3N reaction is investigated down to 50K with the CRESU method.•The kinetics of the CN−+HC3N reaction is fast and weakly temperature dependent.•The main exit channel of the CN−+HC3N reaction is HCN+C3N−.•The CN−+HC3N reaction participates to the growth of anions in Titan’s ionosphere. The Cassini–Huygens probe has uncovered the existence of a profusion of negatively charged molecular species in the upper atmosphere of Titan (∼950km). The presence of large amounts of anions was unexpected and the chemical pathways leading to their formation mostly unknown. The investigation of the negative ion chemistry appears therefore to be a key factor for modeling Titan’s upper atmosphere. We present here the first low temperature experimental kinetic study involving CN−, proposed by Vuitton et al. (2009) to be one of the negative ions detected by the CAPS-ELS instrument onboard the Cassini spacecraft. The temperature dependence of the rate coefficient of the reaction CN−+HC3N, was explored over the 49–294K temperature range in uniform supersonic flows using the CRESU technique. We find that the kinetics of this reaction is fast (k≳4×10−9cm3molecule−1s−1) and presents a weak negative temperature dependence which, considering the experimental error bars, agrees with long-range based capture theory. We also observe that C3N−+HCN represents the main exit channel demonstrating that the studied reaction participates efficiently to the chemical growth of negative ions in the atmosphere of Titan.</description><subject>Astrophysics</subject><subject>Atmospheres, chemistry</subject><subject>Chemical Physics</subject><subject>Ionospheres</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>Titan, atmosphere</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kLFO5DAQhi0EEgvcG1C4RShhHCeO3SCh1R2LtIIGasvnjFkvu_FiG9B1V15Nx-vxJCQsupJqpJnv_2fmJ-SYQcmAibNl6a2JT6msgPESVAlQ75AJAwVFJWq-SyYATBUMeLNPDlJaAkAjFZ-Qx3l4oRnXG4wmP0WkEY3NPvT0wfeYvU00ODq9fv_3ejqb8mtq-o769WY1bByxRF2INC-Q3sfwkhcjbfrPge_prc-mf__7lqjJ65A2C4x4RPacWSX88VUPyd2vn7fTWTG_ubyaXswLy2vIhXXONrIRnWhtyzsJAivHjQQYDhToZOUqJiVvWqFcJ5FL4UTXcmHwt6gZ44fkZOu7MCu9iX5t4h8djNezi7keewCqBqXa55Gtt6yNIaWI7r-AgR4j1ku9jViPEWtQg7oeZOdbGQ5_PHuMOlmPvcXOR7RZd8F_b_ABvtKJKA</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Biennier, Ludovic</creator><creator>Carles, Sophie</creator><creator>Cordier, Daniel</creator><creator>Guillemin, Jean-Claude</creator><creator>Le Picard, Sébastien D.</creator><creator>Faure, Alexandre</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7819-0754</orcidid><orcidid>https://orcid.org/0000-0002-3753-4431</orcidid><orcidid>https://orcid.org/0000-0001-7199-2535</orcidid><orcidid>https://orcid.org/0000-0001-7750-3042</orcidid></search><sort><creationdate>20140101</creationdate><title>Low temperature reaction kinetics of CN−+HC3N and implications for the growth of anions in Titan’s atmosphere</title><author>Biennier, Ludovic ; Carles, Sophie ; Cordier, Daniel ; Guillemin, Jean-Claude ; Le Picard, Sébastien D. ; Faure, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-cffc5856d67c73d806e2f3a800eac6ef82f218835769fd8e386f6d736aeb64113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Astrophysics</topic><topic>Atmospheres, chemistry</topic><topic>Chemical Physics</topic><topic>Ionospheres</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>Titan, atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biennier, Ludovic</creatorcontrib><creatorcontrib>Carles, Sophie</creatorcontrib><creatorcontrib>Cordier, Daniel</creatorcontrib><creatorcontrib>Guillemin, Jean-Claude</creatorcontrib><creatorcontrib>Le Picard, Sébastien D.</creatorcontrib><creatorcontrib>Faure, Alexandre</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biennier, Ludovic</au><au>Carles, Sophie</au><au>Cordier, Daniel</au><au>Guillemin, Jean-Claude</au><au>Le Picard, Sébastien D.</au><au>Faure, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low temperature reaction kinetics of CN−+HC3N and implications for the growth of anions in Titan’s atmosphere</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>227</volume><spage>123</spage><epage>131</epage><pages>123-131</pages><issn>0019-1035</issn><eissn>1090-2643</eissn><abstract>•The reactivity of CN−, proposed to be abundant in Titan’s ionosphere, is explored.•The CN−+HC3N reaction is investigated down to 50K with the CRESU method.•The kinetics of the CN−+HC3N reaction is fast and weakly temperature dependent.•The main exit channel of the CN−+HC3N reaction is HCN+C3N−.•The CN−+HC3N reaction participates to the growth of anions in Titan’s ionosphere. The Cassini–Huygens probe has uncovered the existence of a profusion of negatively charged molecular species in the upper atmosphere of Titan (∼950km). The presence of large amounts of anions was unexpected and the chemical pathways leading to their formation mostly unknown. The investigation of the negative ion chemistry appears therefore to be a key factor for modeling Titan’s upper atmosphere. We present here the first low temperature experimental kinetic study involving CN−, proposed by Vuitton et al. (2009) to be one of the negative ions detected by the CAPS-ELS instrument onboard the Cassini spacecraft. The temperature dependence of the rate coefficient of the reaction CN−+HC3N, was explored over the 49–294K temperature range in uniform supersonic flows using the CRESU technique. We find that the kinetics of this reaction is fast (k≳4×10−9cm3molecule−1s−1) and presents a weak negative temperature dependence which, considering the experimental error bars, agrees with long-range based capture theory. We also observe that C3N−+HCN represents the main exit channel demonstrating that the studied reaction participates efficiently to the chemical growth of negative ions in the atmosphere of Titan.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2013.09.004</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7819-0754</orcidid><orcidid>https://orcid.org/0000-0002-3753-4431</orcidid><orcidid>https://orcid.org/0000-0001-7199-2535</orcidid><orcidid>https://orcid.org/0000-0001-7750-3042</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0019-1035
ispartof Icarus (New York, N.Y. 1962), 2014-01, Vol.227, p.123-131
issn 0019-1035
1090-2643
language eng
recordid cdi_hal_primary_oai_HAL_hal_00940997v1
source Elsevier ScienceDirect Journals Complete
subjects Astrophysics
Atmospheres, chemistry
Chemical Physics
Ionospheres
Physics
Sciences of the Universe
Titan, atmosphere
title Low temperature reaction kinetics of CN−+HC3N and implications for the growth of anions in Titan’s atmosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20temperature%20reaction%20kinetics%20of%20CN%E2%88%92+HC3N%20and%20implications%20for%20the%20growth%20of%20anions%20in%20Titan%E2%80%99s%20atmosphere&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Biennier,%20Ludovic&rft.date=2014-01-01&rft.volume=227&rft.spage=123&rft.epage=131&rft.pages=123-131&rft.issn=0019-1035&rft.eissn=1090-2643&rft_id=info:doi/10.1016/j.icarus.2013.09.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00940997v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0019103513003825&rfr_iscdi=true