Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells
SUMMARY This paper presents a meshless method for the modeling of shell‐type structures in fast dynamics. The model is based on the Mindlin–Reissner theory and takes into account material and geometric nonlinearities. The phenomena that occur prior to rupture are dealt with using damage laws, while...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2012-05, Vol.90 (6), p.707-738 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 738 |
---|---|
container_issue | 6 |
container_start_page | 707 |
container_title | International journal for numerical methods in engineering |
container_volume | 90 |
creator | Caleyron, F. Combescure, A. Faucher, V. Potapov, S. |
description | SUMMARY
This paper presents a meshless method for the modeling of shell‐type structures in fast dynamics. The model is based on the Mindlin–Reissner theory and takes into account material and geometric nonlinearities. The phenomena that occur prior to rupture are dealt with using damage laws, while the rupture itself is represented through the introduction of sharp discontinuities. The method does not represent cracks explicitly, which makes the treatment of multicracking easier. The time discretization is carried out in the framework of explicit dynamics, and the spatial discretization is handled through the smoothed particles hydrodynamics method and the use of moving least square functions. The capabilities of the method are demonstrated using cracking, puncturing and fragmentation examples. Copyright © 2012 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.3337 |
format | Article |
fullrecord | <record><control><sourceid>istex_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00938514v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_SMB21XL5_P</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4337-bf3136a8067b3e735c7ec6e3c3b7b663c378d9c2fc892df1d48a8edae792b7c13</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4p-BN6I-hFZ9KsTXI5dW5CNwUVBS_CaZq6aD9G0qn997Z27M6rAznPeQkvQqcEjwjGwWVZ6BGllO2hAcGC-TjAbB8N2pXwQ8HJITpy7gNjQkJMB-jtpimhMMpzptjkUJuq9KrMS6GAd-1nFlS9sdqrLZTO_G1N6bmiquqVTr012NqoXDtv1aS2Svss57mVznN3jA4yyJ0-2c4her6dPl3P_fh-dnc9iX01bj_qJxklNAKOI5ZQzWiomFaRpoomLImidjKeChVkiosgzUg65sB1CpqJIGGK0CG66HNXkMu1NQXYRlZg5HwSy-4NY0F5SMZfnT3vrbKVc1ZnuwOCZVegbAuUXYEtPevpGpyCvO2iVMbtfBDygERctM7v3bfJdfNvnlwuptvcrTeu1j87D_ZTRoyyUL4sZ_JxcRWQ1ziUD_QXMRqPHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells</title><source>Access via Wiley Online Library</source><creator>Caleyron, F. ; Combescure, A. ; Faucher, V. ; Potapov, S.</creator><creatorcontrib>Caleyron, F. ; Combescure, A. ; Faucher, V. ; Potapov, S.</creatorcontrib><description>SUMMARY
This paper presents a meshless method for the modeling of shell‐type structures in fast dynamics. The model is based on the Mindlin–Reissner theory and takes into account material and geometric nonlinearities. The phenomena that occur prior to rupture are dealt with using damage laws, while the rupture itself is represented through the introduction of sharp discontinuities. The method does not represent cracks explicitly, which makes the treatment of multicracking easier. The time discretization is carried out in the framework of explicit dynamics, and the spatial discretization is handled through the smoothed particles hydrodynamics method and the use of moving least square functions. The capabilities of the method are demonstrated using cracking, puncturing and fragmentation examples. Copyright © 2012 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.3337</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>crack ; Engineering Sciences ; Exact sciences and technology ; failure ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; impact ; Mathematics ; Mechanics ; meshless ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, boundary value problems ; Physics ; Sciences and techniques of general use ; shell ; Solid mechanics ; SPH ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>International journal for numerical methods in engineering, 2012-05, Vol.90 (6), p.707-738</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4337-bf3136a8067b3e735c7ec6e3c3b7b663c378d9c2fc892df1d48a8edae792b7c13</citedby><cites>FETCH-LOGICAL-c4337-bf3136a8067b3e735c7ec6e3c3b7b663c378d9c2fc892df1d48a8edae792b7c13</cites><orcidid>0000-0001-9715-6236 ; 0000-0002-3460-4844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.3337$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.3337$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25821689$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00938514$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Caleyron, F.</creatorcontrib><creatorcontrib>Combescure, A.</creatorcontrib><creatorcontrib>Faucher, V.</creatorcontrib><creatorcontrib>Potapov, S.</creatorcontrib><title>Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARY
This paper presents a meshless method for the modeling of shell‐type structures in fast dynamics. The model is based on the Mindlin–Reissner theory and takes into account material and geometric nonlinearities. The phenomena that occur prior to rupture are dealt with using damage laws, while the rupture itself is represented through the introduction of sharp discontinuities. The method does not represent cracks explicitly, which makes the treatment of multicracking easier. The time discretization is carried out in the framework of explicit dynamics, and the spatial discretization is handled through the smoothed particles hydrodynamics method and the use of moving least square functions. The capabilities of the method are demonstrated using cracking, puncturing and fragmentation examples. Copyright © 2012 John Wiley & Sons, Ltd.</description><subject>crack</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>failure</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>impact</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>meshless</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>shell</subject><subject>Solid mechanics</subject><subject>SPH</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4p-BN6I-hFZ9KsTXI5dW5CNwUVBS_CaZq6aD9G0qn997Z27M6rAznPeQkvQqcEjwjGwWVZ6BGllO2hAcGC-TjAbB8N2pXwQ8HJITpy7gNjQkJMB-jtpimhMMpzptjkUJuq9KrMS6GAd-1nFlS9sdqrLZTO_G1N6bmiquqVTr012NqoXDtv1aS2Svss57mVznN3jA4yyJ0-2c4her6dPl3P_fh-dnc9iX01bj_qJxklNAKOI5ZQzWiomFaRpoomLImidjKeChVkiosgzUg65sB1CpqJIGGK0CG66HNXkMu1NQXYRlZg5HwSy-4NY0F5SMZfnT3vrbKVc1ZnuwOCZVegbAuUXYEtPevpGpyCvO2iVMbtfBDygERctM7v3bfJdfNvnlwuptvcrTeu1j87D_ZTRoyyUL4sZ_JxcRWQ1ziUD_QXMRqPHg</recordid><startdate>20120511</startdate><enddate>20120511</enddate><creator>Caleyron, F.</creator><creator>Combescure, A.</creator><creator>Faucher, V.</creator><creator>Potapov, S.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9715-6236</orcidid><orcidid>https://orcid.org/0000-0002-3460-4844</orcidid></search><sort><creationdate>20120511</creationdate><title>Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells</title><author>Caleyron, F. ; Combescure, A. ; Faucher, V. ; Potapov, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4337-bf3136a8067b3e735c7ec6e3c3b7b663c378d9c2fc892df1d48a8edae792b7c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>crack</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>failure</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>impact</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>meshless</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>shell</topic><topic>Solid mechanics</topic><topic>SPH</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caleyron, F.</creatorcontrib><creatorcontrib>Combescure, A.</creatorcontrib><creatorcontrib>Faucher, V.</creatorcontrib><creatorcontrib>Potapov, S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caleyron, F.</au><au>Combescure, A.</au><au>Faucher, V.</au><au>Potapov, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2012-05-11</date><risdate>2012</risdate><volume>90</volume><issue>6</issue><spage>707</spage><epage>738</epage><pages>707-738</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARY
This paper presents a meshless method for the modeling of shell‐type structures in fast dynamics. The model is based on the Mindlin–Reissner theory and takes into account material and geometric nonlinearities. The phenomena that occur prior to rupture are dealt with using damage laws, while the rupture itself is represented through the introduction of sharp discontinuities. The method does not represent cracks explicitly, which makes the treatment of multicracking easier. The time discretization is carried out in the framework of explicit dynamics, and the spatial discretization is handled through the smoothed particles hydrodynamics method and the use of moving least square functions. The capabilities of the method are demonstrated using cracking, puncturing and fragmentation examples. Copyright © 2012 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.3337</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-9715-6236</orcidid><orcidid>https://orcid.org/0000-0002-3460-4844</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2012-05, Vol.90 (6), p.707-738 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00938514v1 |
source | Access via Wiley Online Library |
subjects | crack Engineering Sciences Exact sciences and technology failure Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) impact Mathematics Mechanics meshless Methods of scientific computing (including symbolic computation, algebraic computation) Numerical analysis Numerical analysis. Scientific computation Partial differential equations, boundary value problems Physics Sciences and techniques of general use shell Solid mechanics SPH Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20simulation%20of%20damage-fracture%20transition%20in%20smoothed%20particles%20hydrodynamics%20shells&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Caleyron,%20F.&rft.date=2012-05-11&rft.volume=90&rft.issue=6&rft.spage=707&rft.epage=738&rft.pages=707-738&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.3337&rft_dat=%3Cistex_hal_p%3Eark_67375_WNG_SMB21XL5_P%3C/istex_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |