Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells

SUMMARY This paper presents a meshless method for the modeling of shell‐type structures in fast dynamics. The model is based on the Mindlin–Reissner theory and takes into account material and geometric nonlinearities. The phenomena that occur prior to rupture are dealt with using damage laws, while...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2012-05, Vol.90 (6), p.707-738
Hauptverfasser: Caleyron, F., Combescure, A., Faucher, V., Potapov, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 6
container_start_page 707
container_title International journal for numerical methods in engineering
container_volume 90
creator Caleyron, F.
Combescure, A.
Faucher, V.
Potapov, S.
description SUMMARY This paper presents a meshless method for the modeling of shell‐type structures in fast dynamics. The model is based on the Mindlin–Reissner theory and takes into account material and geometric nonlinearities. The phenomena that occur prior to rupture are dealt with using damage laws, while the rupture itself is represented through the introduction of sharp discontinuities. The method does not represent cracks explicitly, which makes the treatment of multicracking easier. The time discretization is carried out in the framework of explicit dynamics, and the spatial discretization is handled through the smoothed particles hydrodynamics method and the use of moving least square functions. The capabilities of the method are demonstrated using cracking, puncturing and fragmentation examples. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.3337
format Article
fullrecord <record><control><sourceid>istex_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00938514v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_SMB21XL5_P</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4337-bf3136a8067b3e735c7ec6e3c3b7b663c378d9c2fc892df1d48a8edae792b7c13</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4p-BN6I-hFZ9KsTXI5dW5CNwUVBS_CaZq6aD9G0qn997Z27M6rAznPeQkvQqcEjwjGwWVZ6BGllO2hAcGC-TjAbB8N2pXwQ8HJITpy7gNjQkJMB-jtpimhMMpzptjkUJuq9KrMS6GAd-1nFlS9sdqrLZTO_G1N6bmiquqVTr012NqoXDtv1aS2Svss57mVznN3jA4yyJ0-2c4her6dPl3P_fh-dnc9iX01bj_qJxklNAKOI5ZQzWiomFaRpoomLImidjKeChVkiosgzUg65sB1CpqJIGGK0CG66HNXkMu1NQXYRlZg5HwSy-4NY0F5SMZfnT3vrbKVc1ZnuwOCZVegbAuUXYEtPevpGpyCvO2iVMbtfBDygERctM7v3bfJdfNvnlwuptvcrTeu1j87D_ZTRoyyUL4sZ_JxcRWQ1ziUD_QXMRqPHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells</title><source>Access via Wiley Online Library</source><creator>Caleyron, F. ; Combescure, A. ; Faucher, V. ; Potapov, S.</creator><creatorcontrib>Caleyron, F. ; Combescure, A. ; Faucher, V. ; Potapov, S.</creatorcontrib><description>SUMMARY This paper presents a meshless method for the modeling of shell‐type structures in fast dynamics. The model is based on the Mindlin–Reissner theory and takes into account material and geometric nonlinearities. The phenomena that occur prior to rupture are dealt with using damage laws, while the rupture itself is represented through the introduction of sharp discontinuities. The method does not represent cracks explicitly, which makes the treatment of multicracking easier. The time discretization is carried out in the framework of explicit dynamics, and the spatial discretization is handled through the smoothed particles hydrodynamics method and the use of moving least square functions. The capabilities of the method are demonstrated using cracking, puncturing and fragmentation examples. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.3337</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>crack ; Engineering Sciences ; Exact sciences and technology ; failure ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; impact ; Mathematics ; Mechanics ; meshless ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, boundary value problems ; Physics ; Sciences and techniques of general use ; shell ; Solid mechanics ; SPH ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>International journal for numerical methods in engineering, 2012-05, Vol.90 (6), p.707-738</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4337-bf3136a8067b3e735c7ec6e3c3b7b663c378d9c2fc892df1d48a8edae792b7c13</citedby><cites>FETCH-LOGICAL-c4337-bf3136a8067b3e735c7ec6e3c3b7b663c378d9c2fc892df1d48a8edae792b7c13</cites><orcidid>0000-0001-9715-6236 ; 0000-0002-3460-4844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.3337$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.3337$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25821689$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00938514$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Caleyron, F.</creatorcontrib><creatorcontrib>Combescure, A.</creatorcontrib><creatorcontrib>Faucher, V.</creatorcontrib><creatorcontrib>Potapov, S.</creatorcontrib><title>Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARY This paper presents a meshless method for the modeling of shell‐type structures in fast dynamics. The model is based on the Mindlin–Reissner theory and takes into account material and geometric nonlinearities. The phenomena that occur prior to rupture are dealt with using damage laws, while the rupture itself is represented through the introduction of sharp discontinuities. The method does not represent cracks explicitly, which makes the treatment of multicracking easier. The time discretization is carried out in the framework of explicit dynamics, and the spatial discretization is handled through the smoothed particles hydrodynamics method and the use of moving least square functions. The capabilities of the method are demonstrated using cracking, puncturing and fragmentation examples. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>crack</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>failure</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>impact</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>meshless</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>shell</subject><subject>Solid mechanics</subject><subject>SPH</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4p-BN6I-hFZ9KsTXI5dW5CNwUVBS_CaZq6aD9G0qn997Z27M6rAznPeQkvQqcEjwjGwWVZ6BGllO2hAcGC-TjAbB8N2pXwQ8HJITpy7gNjQkJMB-jtpimhMMpzptjkUJuq9KrMS6GAd-1nFlS9sdqrLZTO_G1N6bmiquqVTr012NqoXDtv1aS2Svss57mVznN3jA4yyJ0-2c4her6dPl3P_fh-dnc9iX01bj_qJxklNAKOI5ZQzWiomFaRpoomLImidjKeChVkiosgzUg65sB1CpqJIGGK0CG66HNXkMu1NQXYRlZg5HwSy-4NY0F5SMZfnT3vrbKVc1ZnuwOCZVegbAuUXYEtPevpGpyCvO2iVMbtfBDygERctM7v3bfJdfNvnlwuptvcrTeu1j87D_ZTRoyyUL4sZ_JxcRWQ1ziUD_QXMRqPHg</recordid><startdate>20120511</startdate><enddate>20120511</enddate><creator>Caleyron, F.</creator><creator>Combescure, A.</creator><creator>Faucher, V.</creator><creator>Potapov, S.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9715-6236</orcidid><orcidid>https://orcid.org/0000-0002-3460-4844</orcidid></search><sort><creationdate>20120511</creationdate><title>Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells</title><author>Caleyron, F. ; Combescure, A. ; Faucher, V. ; Potapov, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4337-bf3136a8067b3e735c7ec6e3c3b7b663c378d9c2fc892df1d48a8edae792b7c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>crack</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>failure</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>impact</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>meshless</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>shell</topic><topic>Solid mechanics</topic><topic>SPH</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caleyron, F.</creatorcontrib><creatorcontrib>Combescure, A.</creatorcontrib><creatorcontrib>Faucher, V.</creatorcontrib><creatorcontrib>Potapov, S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caleyron, F.</au><au>Combescure, A.</au><au>Faucher, V.</au><au>Potapov, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2012-05-11</date><risdate>2012</risdate><volume>90</volume><issue>6</issue><spage>707</spage><epage>738</epage><pages>707-738</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARY This paper presents a meshless method for the modeling of shell‐type structures in fast dynamics. The model is based on the Mindlin–Reissner theory and takes into account material and geometric nonlinearities. The phenomena that occur prior to rupture are dealt with using damage laws, while the rupture itself is represented through the introduction of sharp discontinuities. The method does not represent cracks explicitly, which makes the treatment of multicracking easier. The time discretization is carried out in the framework of explicit dynamics, and the spatial discretization is handled through the smoothed particles hydrodynamics method and the use of moving least square functions. The capabilities of the method are demonstrated using cracking, puncturing and fragmentation examples. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.3337</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-9715-6236</orcidid><orcidid>https://orcid.org/0000-0002-3460-4844</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2012-05, Vol.90 (6), p.707-738
issn 0029-5981
1097-0207
language eng
recordid cdi_hal_primary_oai_HAL_hal_00938514v1
source Access via Wiley Online Library
subjects crack
Engineering Sciences
Exact sciences and technology
failure
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
impact
Mathematics
Mechanics
meshless
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, boundary value problems
Physics
Sciences and techniques of general use
shell
Solid mechanics
SPH
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20simulation%20of%20damage-fracture%20transition%20in%20smoothed%20particles%20hydrodynamics%20shells&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Caleyron,%20F.&rft.date=2012-05-11&rft.volume=90&rft.issue=6&rft.spage=707&rft.epage=738&rft.pages=707-738&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.3337&rft_dat=%3Cistex_hal_p%3Eark_67375_WNG_SMB21XL5_P%3C/istex_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true