A Parallel Full Geometric Multigrid Solver for Time Harmonic Maxwell Problems

The design of scalable parallel simulation codes for complex phenomena is challenging. For simulations that rely on PDE solution on complex three-dimensional (3D) geometries, all the components ranging from the initialization phases to the ultimate linear system solution must be efficiently parallel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2014-01, Vol.36 (2), p.C119-C138
Hauptverfasser: Chanaud, M, Giraud, L, Goudin, D, Pesque, J J, Roman, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page C138
container_issue 2
container_start_page C119
container_title SIAM journal on scientific computing
container_volume 36
creator Chanaud, M
Giraud, L
Goudin, D
Pesque, J J
Roman, J
description The design of scalable parallel simulation codes for complex phenomena is challenging. For simulations that rely on PDE solution on complex three-dimensional (3D) geometries, all the components ranging from the initialization phases to the ultimate linear system solution must be efficiently parallelized. In this paper we address the solution of 3D harmonic Maxwell's equations using a parallel geometric full multigrid scheme where only a coarse mesh, which resolves the object geometry, has to be supplied by an external mesh generator. The electromagnetic problem is solved on a refined mesh that complies with the discretization constraint that links the mesh size and the wavelength. The mesh hierarchy is built in parallel using an automatic mesh refinement technique, and parallel matrix-free calculations are performed to process all the finer meshes in the multigrid hierarchy. Only the linear system on the coarse mesh is assembled and solved by a parallel sparse direct solver. We illustrate the numerical robustness of the proposed scheme on large 3D complex geometries and assess the parallel scalability of the implementation on large problems with up to 1.3 billion unknowns on a few hundred cores. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/130909512
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00933526v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3255226851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d27e2481f39145499172ecdea0ec9a1d3618b15a005b80dade9ce2b3ba6646f93</originalsourceid><addsrcrecordid>eNpdkdFLwzAQxoMoOKcP_gcBX_ShmkvatHkcw23ChgPnc0jbq3aky0zWqf-9LZMJPt3H8bu77_gIuQZ2DyDSBxBMMZUAPyED6ESUgkpPey3jKONpck4uQlgzBjJWfEAWI7o03liLlk5aa-kUXYM7Xxd00dpd_ebrkr44u0dPK-fpqm6Qzoxv3KZHzNcndkNL73KLTbgkZ5WxAa9-65C8Th5X41k0f54-jUfzqBCJ2kUlT5HHGVRCQZzESkHKsSjRMCyUgVJIyHJIDGNJnrHSlKgK5LnIjZSxrJQYkrvD3ndj9dbXjfHf2plaz0Zz3fcYU0IkXO6hY28P7Na7jxbDTjd1KDrXZoOuDRpkCgnjLBMdevMPXbvWb7pPdIeoDlQZ_B0vvAvBY3V0AEz3IehjCOIH7XR2Mg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1509671981</pqid></control><display><type>article</type><title>A Parallel Full Geometric Multigrid Solver for Time Harmonic Maxwell Problems</title><source>SIAM Journals Online</source><creator>Chanaud, M ; Giraud, L ; Goudin, D ; Pesque, J J ; Roman, J</creator><creatorcontrib>Chanaud, M ; Giraud, L ; Goudin, D ; Pesque, J J ; Roman, J</creatorcontrib><description>The design of scalable parallel simulation codes for complex phenomena is challenging. For simulations that rely on PDE solution on complex three-dimensional (3D) geometries, all the components ranging from the initialization phases to the ultimate linear system solution must be efficiently parallelized. In this paper we address the solution of 3D harmonic Maxwell's equations using a parallel geometric full multigrid scheme where only a coarse mesh, which resolves the object geometry, has to be supplied by an external mesh generator. The electromagnetic problem is solved on a refined mesh that complies with the discretization constraint that links the mesh size and the wavelength. The mesh hierarchy is built in parallel using an automatic mesh refinement technique, and parallel matrix-free calculations are performed to process all the finer meshes in the multigrid hierarchy. Only the linear system on the coarse mesh is assembled and solved by a parallel sparse direct solver. We illustrate the numerical robustness of the proposed scheme on large 3D complex geometries and assess the parallel scalability of the implementation on large problems with up to 1.3 billion unknowns on a few hundred cores. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/130909512</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Computer Science ; Computer simulation ; Distributed, Parallel, and Cluster Computing ; Finite element method ; Geometry ; Harmonics ; Hierarchies ; Linear systems ; Mathematical models ; Mathematics ; Numerical Analysis ; Simulation ; Solvers ; Three dimensional</subject><ispartof>SIAM journal on scientific computing, 2014-01, Vol.36 (2), p.C119-C138</ispartof><rights>2014, Society for Industrial and Applied Mathematics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d27e2481f39145499172ecdea0ec9a1d3618b15a005b80dade9ce2b3ba6646f93</citedby><cites>FETCH-LOGICAL-c359t-d27e2481f39145499172ecdea0ec9a1d3618b15a005b80dade9ce2b3ba6646f93</cites><orcidid>0000-0002-7062-7672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3171,27901,27902</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00933526$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chanaud, M</creatorcontrib><creatorcontrib>Giraud, L</creatorcontrib><creatorcontrib>Goudin, D</creatorcontrib><creatorcontrib>Pesque, J J</creatorcontrib><creatorcontrib>Roman, J</creatorcontrib><title>A Parallel Full Geometric Multigrid Solver for Time Harmonic Maxwell Problems</title><title>SIAM journal on scientific computing</title><description>The design of scalable parallel simulation codes for complex phenomena is challenging. For simulations that rely on PDE solution on complex three-dimensional (3D) geometries, all the components ranging from the initialization phases to the ultimate linear system solution must be efficiently parallelized. In this paper we address the solution of 3D harmonic Maxwell's equations using a parallel geometric full multigrid scheme where only a coarse mesh, which resolves the object geometry, has to be supplied by an external mesh generator. The electromagnetic problem is solved on a refined mesh that complies with the discretization constraint that links the mesh size and the wavelength. The mesh hierarchy is built in parallel using an automatic mesh refinement technique, and parallel matrix-free calculations are performed to process all the finer meshes in the multigrid hierarchy. Only the linear system on the coarse mesh is assembled and solved by a parallel sparse direct solver. We illustrate the numerical robustness of the proposed scheme on large 3D complex geometries and assess the parallel scalability of the implementation on large problems with up to 1.3 billion unknowns on a few hundred cores. [PUBLICATION ABSTRACT]</description><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Harmonics</subject><subject>Hierarchies</subject><subject>Linear systems</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>Simulation</subject><subject>Solvers</subject><subject>Three dimensional</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkdFLwzAQxoMoOKcP_gcBX_ShmkvatHkcw23ChgPnc0jbq3aky0zWqf-9LZMJPt3H8bu77_gIuQZ2DyDSBxBMMZUAPyED6ESUgkpPey3jKONpck4uQlgzBjJWfEAWI7o03liLlk5aa-kUXYM7Xxd00dpd_ebrkr44u0dPK-fpqm6Qzoxv3KZHzNcndkNL73KLTbgkZ5WxAa9-65C8Th5X41k0f54-jUfzqBCJ2kUlT5HHGVRCQZzESkHKsSjRMCyUgVJIyHJIDGNJnrHSlKgK5LnIjZSxrJQYkrvD3ndj9dbXjfHf2plaz0Zz3fcYU0IkXO6hY28P7Na7jxbDTjd1KDrXZoOuDRpkCgnjLBMdevMPXbvWb7pPdIeoDlQZ_B0vvAvBY3V0AEz3IehjCOIH7XR2Mg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Chanaud, M</creator><creator>Giraud, L</creator><creator>Goudin, D</creator><creator>Pesque, J J</creator><creator>Roman, J</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7062-7672</orcidid></search><sort><creationdate>20140101</creationdate><title>A Parallel Full Geometric Multigrid Solver for Time Harmonic Maxwell Problems</title><author>Chanaud, M ; Giraud, L ; Goudin, D ; Pesque, J J ; Roman, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d27e2481f39145499172ecdea0ec9a1d3618b15a005b80dade9ce2b3ba6646f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Harmonics</topic><topic>Hierarchies</topic><topic>Linear systems</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>Simulation</topic><topic>Solvers</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chanaud, M</creatorcontrib><creatorcontrib>Giraud, L</creatorcontrib><creatorcontrib>Goudin, D</creatorcontrib><creatorcontrib>Pesque, J J</creatorcontrib><creatorcontrib>Roman, J</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chanaud, M</au><au>Giraud, L</au><au>Goudin, D</au><au>Pesque, J J</au><au>Roman, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Parallel Full Geometric Multigrid Solver for Time Harmonic Maxwell Problems</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>36</volume><issue>2</issue><spage>C119</spage><epage>C138</epage><pages>C119-C138</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>The design of scalable parallel simulation codes for complex phenomena is challenging. For simulations that rely on PDE solution on complex three-dimensional (3D) geometries, all the components ranging from the initialization phases to the ultimate linear system solution must be efficiently parallelized. In this paper we address the solution of 3D harmonic Maxwell's equations using a parallel geometric full multigrid scheme where only a coarse mesh, which resolves the object geometry, has to be supplied by an external mesh generator. The electromagnetic problem is solved on a refined mesh that complies with the discretization constraint that links the mesh size and the wavelength. The mesh hierarchy is built in parallel using an automatic mesh refinement technique, and parallel matrix-free calculations are performed to process all the finer meshes in the multigrid hierarchy. Only the linear system on the coarse mesh is assembled and solved by a parallel sparse direct solver. We illustrate the numerical robustness of the proposed scheme on large 3D complex geometries and assess the parallel scalability of the implementation on large problems with up to 1.3 billion unknowns on a few hundred cores. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/130909512</doi><orcidid>https://orcid.org/0000-0002-7062-7672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2014-01, Vol.36 (2), p.C119-C138
issn 1064-8275
1095-7197
language eng
recordid cdi_hal_primary_oai_HAL_hal_00933526v1
source SIAM Journals Online
subjects Computer Science
Computer simulation
Distributed, Parallel, and Cluster Computing
Finite element method
Geometry
Harmonics
Hierarchies
Linear systems
Mathematical models
Mathematics
Numerical Analysis
Simulation
Solvers
Three dimensional
title A Parallel Full Geometric Multigrid Solver for Time Harmonic Maxwell Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Parallel%20Full%20Geometric%20Multigrid%20Solver%20for%20Time%20Harmonic%20Maxwell%20Problems&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Chanaud,%20M&rft.date=2014-01-01&rft.volume=36&rft.issue=2&rft.spage=C119&rft.epage=C138&rft.pages=C119-C138&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/130909512&rft_dat=%3Cproquest_hal_p%3E3255226851%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1509671981&rft_id=info:pmid/&rfr_iscdi=true