Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization
We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a volume distortion criterion. The result is a point‐to‐point map distorting linear cells...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2013-08, Vol.32 (5), p.103-112 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | 5 |
container_start_page | 103 |
container_title | Computer graphics forum |
container_volume | 32 |
creator | Paillé, Gilles-Philippe Poulin, Pierre Lévy, Bruno |
description | We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a volume distortion criterion. The result is a point‐to‐point map distorting linear cells into curved ones. Our method is based on several extensions of Voronoi Squared Distance Minimization (VSDM) combined with a higher‐order finite element formulation of the deformation energy. This allows us to globally optimize the mapping without prior parameterization. The anisotropic VSDM formulation allows for sharp and semi‐sharp features to be implicitly preserved without tagging. We use a hierarchical finite element function basis that selectively adapts to the geometric details. This makes both the method more efficient and the representation more compact. We apply our method to geometric modeling applications in computer‐aided design and computer graphics, including mixed‐element meshing, mesh optimization, subdivision volume fitting, and shell meshing. |
doi_str_mv | 10.1111/cgf.12177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00930030v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439774952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5077-c192987b24915cf7e9968e40c7662fb5394cadf4e549eeff405ebfa7210141883</originalsourceid><addsrcrecordid>eNp1kc1u1DAQxy0EEkvhwBtE4gKHtOPEH_GxCt0t0rZUKl_iYnndcdcliVs7oSwvxUPwYvWyUCQk5uLRzO8_9vhPyHMK-zTHgb10-7SiUj4gM8qELBvB1UMyA5pzCZw_Jk9SugIAJgWfkU9zP45-uCzOQrcZQu9NV3wI3dRjKsZQnE_RGYvFCaZ1rtz6cZ3bMQzh54_i_GYyES-K1z6NZthSfvC9_25GH4an5JEzXcJnv8898n5-9K49LpdvF2_aw2VpOUhZWqoq1chVxRTl1klUSjTIwEohKrfitWLWXDiGnClE5xhwXDkjKwqU0aap98ir3dy16fR19L2JGx2M18eHS72tAagaoIavNLMvd-x1DDcTplH3PlnsOjNgmJKmrFZSMsWrjL74B70KUxzyJpmqBK0EUP73chtDShHd_Qso6K0fOvuhf_mR2YMde-s73Pwf1O1i_kdR7hT5f_HbvcLEL1rIWnL98XShTz63wNuzhRb1HdPqmhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426126015</pqid></control><display><type>article</type><title>Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Paillé, Gilles-Philippe ; Poulin, Pierre ; Lévy, Bruno</creator><creatorcontrib>Paillé, Gilles-Philippe ; Poulin, Pierre ; Lévy, Bruno</creatorcontrib><description>We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a volume distortion criterion. The result is a point‐to‐point map distorting linear cells into curved ones. Our method is based on several extensions of Voronoi Squared Distance Minimization (VSDM) combined with a higher‐order finite element formulation of the deformation energy. This allows us to globally optimize the mapping without prior parameterization. The anisotropic VSDM formulation allows for sharp and semi‐sharp features to be implicitly preserved without tagging. We use a hierarchical finite element function basis that selectively adapts to the geometric details. This makes both the method more efficient and the representation more compact. We apply our method to geometric modeling applications in computer‐aided design and computer graphics, including mixed‐element meshing, mesh optimization, subdivision volume fitting, and shell meshing.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12177</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Computational Geometry ; Computer graphics ; Computer Science ; Finite element method ; Fittings ; Graphics ; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Physically based modeling ; Mapping ; Mathematical analysis ; Mathematical models ; Meshing ; Optimization ; Parametrization ; Polynomials ; Studies</subject><ispartof>Computer graphics forum, 2013-08, Vol.32 (5), p.103-112</ispartof><rights>2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5077-c192987b24915cf7e9968e40c7662fb5394cadf4e549eeff405ebfa7210141883</citedby><cites>FETCH-LOGICAL-c5077-c192987b24915cf7e9968e40c7662fb5394cadf4e549eeff405ebfa7210141883</cites><orcidid>0000-0002-7007-3219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.12177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.12177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00930030$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Paillé, Gilles-Philippe</creatorcontrib><creatorcontrib>Poulin, Pierre</creatorcontrib><creatorcontrib>Lévy, Bruno</creatorcontrib><title>Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization</title><title>Computer graphics forum</title><description>We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a volume distortion criterion. The result is a point‐to‐point map distorting linear cells into curved ones. Our method is based on several extensions of Voronoi Squared Distance Minimization (VSDM) combined with a higher‐order finite element formulation of the deformation energy. This allows us to globally optimize the mapping without prior parameterization. The anisotropic VSDM formulation allows for sharp and semi‐sharp features to be implicitly preserved without tagging. We use a hierarchical finite element function basis that selectively adapts to the geometric details. This makes both the method more efficient and the representation more compact. We apply our method to geometric modeling applications in computer‐aided design and computer graphics, including mixed‐element meshing, mesh optimization, subdivision volume fitting, and shell meshing.</description><subject>Computational Geometry</subject><subject>Computer graphics</subject><subject>Computer Science</subject><subject>Finite element method</subject><subject>Fittings</subject><subject>Graphics</subject><subject>I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Physically based modeling</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Meshing</subject><subject>Optimization</subject><subject>Parametrization</subject><subject>Polynomials</subject><subject>Studies</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAQxy0EEkvhwBtE4gKHtOPEH_GxCt0t0rZUKl_iYnndcdcliVs7oSwvxUPwYvWyUCQk5uLRzO8_9vhPyHMK-zTHgb10-7SiUj4gM8qELBvB1UMyA5pzCZw_Jk9SugIAJgWfkU9zP45-uCzOQrcZQu9NV3wI3dRjKsZQnE_RGYvFCaZ1rtz6cZ3bMQzh54_i_GYyES-K1z6NZthSfvC9_25GH4an5JEzXcJnv8898n5-9K49LpdvF2_aw2VpOUhZWqoq1chVxRTl1klUSjTIwEohKrfitWLWXDiGnClE5xhwXDkjKwqU0aap98ir3dy16fR19L2JGx2M18eHS72tAagaoIavNLMvd-x1DDcTplH3PlnsOjNgmJKmrFZSMsWrjL74B70KUxzyJpmqBK0EUP73chtDShHd_Qso6K0fOvuhf_mR2YMde-s73Pwf1O1i_kdR7hT5f_HbvcLEL1rIWnL98XShTz63wNuzhRb1HdPqmhQ</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Paillé, Gilles-Philippe</creator><creator>Poulin, Pierre</creator><creator>Lévy, Bruno</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7007-3219</orcidid></search><sort><creationdate>201308</creationdate><title>Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization</title><author>Paillé, Gilles-Philippe ; Poulin, Pierre ; Lévy, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5077-c192987b24915cf7e9968e40c7662fb5394cadf4e549eeff405ebfa7210141883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational Geometry</topic><topic>Computer graphics</topic><topic>Computer Science</topic><topic>Finite element method</topic><topic>Fittings</topic><topic>Graphics</topic><topic>I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Physically based modeling</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Meshing</topic><topic>Optimization</topic><topic>Parametrization</topic><topic>Polynomials</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paillé, Gilles-Philippe</creatorcontrib><creatorcontrib>Poulin, Pierre</creatorcontrib><creatorcontrib>Lévy, Bruno</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paillé, Gilles-Philippe</au><au>Poulin, Pierre</au><au>Lévy, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization</atitle><jtitle>Computer graphics forum</jtitle><date>2013-08</date><risdate>2013</risdate><volume>32</volume><issue>5</issue><spage>103</spage><epage>112</epage><pages>103-112</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a volume distortion criterion. The result is a point‐to‐point map distorting linear cells into curved ones. Our method is based on several extensions of Voronoi Squared Distance Minimization (VSDM) combined with a higher‐order finite element formulation of the deformation energy. This allows us to globally optimize the mapping without prior parameterization. The anisotropic VSDM formulation allows for sharp and semi‐sharp features to be implicitly preserved without tagging. We use a hierarchical finite element function basis that selectively adapts to the geometric details. This makes both the method more efficient and the representation more compact. We apply our method to geometric modeling applications in computer‐aided design and computer graphics, including mixed‐element meshing, mesh optimization, subdivision volume fitting, and shell meshing.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12177</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7007-3219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2013-08, Vol.32 (5), p.103-112 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00930030v1 |
source | Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Computational Geometry Computer graphics Computer Science Finite element method Fittings Graphics I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Physically based modeling Mapping Mathematical analysis Mathematical models Meshing Optimization Parametrization Polynomials Studies |
title | Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fitting%20Polynomial%20Volumes%20to%20Surface%20Meshes%20with%20Vorono%C3%AF%20Squared%20Distance%20Minimization&rft.jtitle=Computer%20graphics%20forum&rft.au=Paill%C3%A9,%20Gilles-Philippe&rft.date=2013-08&rft.volume=32&rft.issue=5&rft.spage=103&rft.epage=112&rft.pages=103-112&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12177&rft_dat=%3Cproquest_hal_p%3E1439774952%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426126015&rft_id=info:pmid/&rfr_iscdi=true |