Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization

We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a volume distortion criterion. The result is a point‐to‐point map distorting linear cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2013-08, Vol.32 (5), p.103-112
Hauptverfasser: Paillé, Gilles-Philippe, Poulin, Pierre, Lévy, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 5
container_start_page 103
container_title Computer graphics forum
container_volume 32
creator Paillé, Gilles-Philippe
Poulin, Pierre
Lévy, Bruno
description We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a volume distortion criterion. The result is a point‐to‐point map distorting linear cells into curved ones. Our method is based on several extensions of Voronoi Squared Distance Minimization (VSDM) combined with a higher‐order finite element formulation of the deformation energy. This allows us to globally optimize the mapping without prior parameterization. The anisotropic VSDM formulation allows for sharp and semi‐sharp features to be implicitly preserved without tagging. We use a hierarchical finite element function basis that selectively adapts to the geometric details. This makes both the method more efficient and the representation more compact. We apply our method to geometric modeling applications in computer‐aided design and computer graphics, including mixed‐element meshing, mesh optimization, subdivision volume fitting, and shell meshing.
doi_str_mv 10.1111/cgf.12177
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00930030v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439774952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5077-c192987b24915cf7e9968e40c7662fb5394cadf4e549eeff405ebfa7210141883</originalsourceid><addsrcrecordid>eNp1kc1u1DAQxy0EEkvhwBtE4gKHtOPEH_GxCt0t0rZUKl_iYnndcdcliVs7oSwvxUPwYvWyUCQk5uLRzO8_9vhPyHMK-zTHgb10-7SiUj4gM8qELBvB1UMyA5pzCZw_Jk9SugIAJgWfkU9zP45-uCzOQrcZQu9NV3wI3dRjKsZQnE_RGYvFCaZ1rtz6cZ3bMQzh54_i_GYyES-K1z6NZthSfvC9_25GH4an5JEzXcJnv8898n5-9K49LpdvF2_aw2VpOUhZWqoq1chVxRTl1klUSjTIwEohKrfitWLWXDiGnClE5xhwXDkjKwqU0aap98ir3dy16fR19L2JGx2M18eHS72tAagaoIavNLMvd-x1DDcTplH3PlnsOjNgmJKmrFZSMsWrjL74B70KUxzyJpmqBK0EUP73chtDShHd_Qso6K0fOvuhf_mR2YMde-s73Pwf1O1i_kdR7hT5f_HbvcLEL1rIWnL98XShTz63wNuzhRb1HdPqmhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426126015</pqid></control><display><type>article</type><title>Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Paillé, Gilles-Philippe ; Poulin, Pierre ; Lévy, Bruno</creator><creatorcontrib>Paillé, Gilles-Philippe ; Poulin, Pierre ; Lévy, Bruno</creatorcontrib><description>We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a volume distortion criterion. The result is a point‐to‐point map distorting linear cells into curved ones. Our method is based on several extensions of Voronoi Squared Distance Minimization (VSDM) combined with a higher‐order finite element formulation of the deformation energy. This allows us to globally optimize the mapping without prior parameterization. The anisotropic VSDM formulation allows for sharp and semi‐sharp features to be implicitly preserved without tagging. We use a hierarchical finite element function basis that selectively adapts to the geometric details. This makes both the method more efficient and the representation more compact. We apply our method to geometric modeling applications in computer‐aided design and computer graphics, including mixed‐element meshing, mesh optimization, subdivision volume fitting, and shell meshing.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12177</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Computational Geometry ; Computer graphics ; Computer Science ; Finite element method ; Fittings ; Graphics ; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Physically based modeling ; Mapping ; Mathematical analysis ; Mathematical models ; Meshing ; Optimization ; Parametrization ; Polynomials ; Studies</subject><ispartof>Computer graphics forum, 2013-08, Vol.32 (5), p.103-112</ispartof><rights>2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5077-c192987b24915cf7e9968e40c7662fb5394cadf4e549eeff405ebfa7210141883</citedby><cites>FETCH-LOGICAL-c5077-c192987b24915cf7e9968e40c7662fb5394cadf4e549eeff405ebfa7210141883</cites><orcidid>0000-0002-7007-3219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.12177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.12177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00930030$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Paillé, Gilles-Philippe</creatorcontrib><creatorcontrib>Poulin, Pierre</creatorcontrib><creatorcontrib>Lévy, Bruno</creatorcontrib><title>Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization</title><title>Computer graphics forum</title><description>We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a volume distortion criterion. The result is a point‐to‐point map distorting linear cells into curved ones. Our method is based on several extensions of Voronoi Squared Distance Minimization (VSDM) combined with a higher‐order finite element formulation of the deformation energy. This allows us to globally optimize the mapping without prior parameterization. The anisotropic VSDM formulation allows for sharp and semi‐sharp features to be implicitly preserved without tagging. We use a hierarchical finite element function basis that selectively adapts to the geometric details. This makes both the method more efficient and the representation more compact. We apply our method to geometric modeling applications in computer‐aided design and computer graphics, including mixed‐element meshing, mesh optimization, subdivision volume fitting, and shell meshing.</description><subject>Computational Geometry</subject><subject>Computer graphics</subject><subject>Computer Science</subject><subject>Finite element method</subject><subject>Fittings</subject><subject>Graphics</subject><subject>I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Physically based modeling</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Meshing</subject><subject>Optimization</subject><subject>Parametrization</subject><subject>Polynomials</subject><subject>Studies</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAQxy0EEkvhwBtE4gKHtOPEH_GxCt0t0rZUKl_iYnndcdcliVs7oSwvxUPwYvWyUCQk5uLRzO8_9vhPyHMK-zTHgb10-7SiUj4gM8qELBvB1UMyA5pzCZw_Jk9SugIAJgWfkU9zP45-uCzOQrcZQu9NV3wI3dRjKsZQnE_RGYvFCaZ1rtz6cZ3bMQzh54_i_GYyES-K1z6NZthSfvC9_25GH4an5JEzXcJnv8898n5-9K49LpdvF2_aw2VpOUhZWqoq1chVxRTl1klUSjTIwEohKrfitWLWXDiGnClE5xhwXDkjKwqU0aap98ir3dy16fR19L2JGx2M18eHS72tAagaoIavNLMvd-x1DDcTplH3PlnsOjNgmJKmrFZSMsWrjL74B70KUxzyJpmqBK0EUP73chtDShHd_Qso6K0fOvuhf_mR2YMde-s73Pwf1O1i_kdR7hT5f_HbvcLEL1rIWnL98XShTz63wNuzhRb1HdPqmhQ</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Paillé, Gilles-Philippe</creator><creator>Poulin, Pierre</creator><creator>Lévy, Bruno</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7007-3219</orcidid></search><sort><creationdate>201308</creationdate><title>Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization</title><author>Paillé, Gilles-Philippe ; Poulin, Pierre ; Lévy, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5077-c192987b24915cf7e9968e40c7662fb5394cadf4e549eeff405ebfa7210141883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational Geometry</topic><topic>Computer graphics</topic><topic>Computer Science</topic><topic>Finite element method</topic><topic>Fittings</topic><topic>Graphics</topic><topic>I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Physically based modeling</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Meshing</topic><topic>Optimization</topic><topic>Parametrization</topic><topic>Polynomials</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paillé, Gilles-Philippe</creatorcontrib><creatorcontrib>Poulin, Pierre</creatorcontrib><creatorcontrib>Lévy, Bruno</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paillé, Gilles-Philippe</au><au>Poulin, Pierre</au><au>Lévy, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization</atitle><jtitle>Computer graphics forum</jtitle><date>2013-08</date><risdate>2013</risdate><volume>32</volume><issue>5</issue><spage>103</spage><epage>112</epage><pages>103-112</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a volume distortion criterion. The result is a point‐to‐point map distorting linear cells into curved ones. Our method is based on several extensions of Voronoi Squared Distance Minimization (VSDM) combined with a higher‐order finite element formulation of the deformation energy. This allows us to globally optimize the mapping without prior parameterization. The anisotropic VSDM formulation allows for sharp and semi‐sharp features to be implicitly preserved without tagging. We use a hierarchical finite element function basis that selectively adapts to the geometric details. This makes both the method more efficient and the representation more compact. We apply our method to geometric modeling applications in computer‐aided design and computer graphics, including mixed‐element meshing, mesh optimization, subdivision volume fitting, and shell meshing.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12177</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7007-3219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2013-08, Vol.32 (5), p.103-112
issn 0167-7055
1467-8659
language eng
recordid cdi_hal_primary_oai_HAL_hal_00930030v1
source Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects Computational Geometry
Computer graphics
Computer Science
Finite element method
Fittings
Graphics
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Physically based modeling
Mapping
Mathematical analysis
Mathematical models
Meshing
Optimization
Parametrization
Polynomials
Studies
title Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fitting%20Polynomial%20Volumes%20to%20Surface%20Meshes%20with%20Vorono%C3%AF%20Squared%20Distance%20Minimization&rft.jtitle=Computer%20graphics%20forum&rft.au=Paill%C3%A9,%20Gilles-Philippe&rft.date=2013-08&rft.volume=32&rft.issue=5&rft.spage=103&rft.epage=112&rft.pages=103-112&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12177&rft_dat=%3Cproquest_hal_p%3E1439774952%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426126015&rft_id=info:pmid/&rfr_iscdi=true