Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme

Numerical modeling of debris avalanche is presented here. The model uses the long‐wave approximation based on the small aspect ratio of debris avalanches as in classical Saint Venant model of shallow water. Depth‐averaged equations using this approximation are derived in a reference frame linked to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2003-11, Vol.108 (B11), p.EPM9.1-n/a
Hauptverfasser: Mangeney-Castelnau, A., Vilotte, J.-P., Bristeau, M. O., Perthame, B., Bouchut, F., Simeoni, C., Yerneni, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue B11
container_start_page EPM9.1
container_title Journal of Geophysical Research
container_volume 108
creator Mangeney-Castelnau, A.
Vilotte, J.-P.
Bristeau, M. O.
Perthame, B.
Bouchut, F.
Simeoni, C.
Yerneni, S.
description Numerical modeling of debris avalanche is presented here. The model uses the long‐wave approximation based on the small aspect ratio of debris avalanches as in classical Saint Venant model of shallow water. Depth‐averaged equations using this approximation are derived in a reference frame linked to the topography. Debris avalanche is treated here as a single‐phase, dry granular flow with Coulomb‐type behavior. The numerical finite volume method uses a kinetic scheme based on the description of the microscopic behavior of the system to define numerical fluxes at the interfaces of a finite element mesh. The main advantage of this method is to preserve the height positivity. The originality of the presented scheme stands in the introduction of a Dirac distribution of particles at the microscopic scale in order to describe the stopping of a granular mass when the driving forces are under the Coulomb threshold. Comparisons with analytical solutions for dam break problems and experimental results show the efficiency of the model in dealing with significant discontinuities and reproducing the flowing and stopping phase of granular avalanches. The ability of the model to describe debris avalanche behavior is illustrated here by schematic numerical simulation of an avalanche over simplified topography. Coulomb‐type behavior with constant and variable friction angle is compared in the framework of this simple example. Numerical tests show that such an approach not only provides insights into the flowing and stopping stage of the granular mass but allows observation of interesting behavior such as the existence of a fluid‐like zone behind a stopped solid‐like granular mass in specific situations, suggesting the presence of horizontal surfaces in the deposited mass.
doi_str_mv 10.1029/2002JB002024
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00922781v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27890309</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5999-9bc33aada3b8f56c9a1e100868a66175f6bfc3651ecc9302d874641f82db5be3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EEqPSHQ_gDUhIBK7t2LGXnRFMGY0GqYzo0rpxHGqanzZOCn17HKUqrAAvfGXrO0f36BDyksE7Bty85wB8t04X8PwJWXEmVcbT4ylZAct1BpwXz8lpjN8hnVyqHNiKXB6m1g_BYUPbvvJN6L7RvqZ4hw127spHWmL0Fe07-gVDN9KvvsM0_O2EY-i7SKc4a5Beh86PwdGYVK1_QZ7V2ER_-jBPyPHjh-PmPNt_3n7anO0zlMaYzJROCMQKRalrqZxB5hmAVhqVYoWsVVk7oSTzzhkBvNJFrnJWa16VsvTihLxZbK-wsTdDaHG4tz0Ge362t_MfgEm5NbtjiX29sDdDfzv5ONo2ROebFNT3U7QJMyDA_A-odcH_DTLDtAA9g28X0A19jIOvH3dlYOf27J_tJfzVgy_G1Ew9pCpC_K2RIoXiInFi4X6Ext__1dPuthdrJmQ-L5MtqhBH__NRhcO1VYUopL08bO3meLHebTcHW4hf_2S1Mg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19183089</pqid></control><display><type>article</type><title>Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Mangeney-Castelnau, A. ; Vilotte, J.-P. ; Bristeau, M. O. ; Perthame, B. ; Bouchut, F. ; Simeoni, C. ; Yerneni, S.</creator><creatorcontrib>Mangeney-Castelnau, A. ; Vilotte, J.-P. ; Bristeau, M. O. ; Perthame, B. ; Bouchut, F. ; Simeoni, C. ; Yerneni, S.</creatorcontrib><description>Numerical modeling of debris avalanche is presented here. The model uses the long‐wave approximation based on the small aspect ratio of debris avalanches as in classical Saint Venant model of shallow water. Depth‐averaged equations using this approximation are derived in a reference frame linked to the topography. Debris avalanche is treated here as a single‐phase, dry granular flow with Coulomb‐type behavior. The numerical finite volume method uses a kinetic scheme based on the description of the microscopic behavior of the system to define numerical fluxes at the interfaces of a finite element mesh. The main advantage of this method is to preserve the height positivity. The originality of the presented scheme stands in the introduction of a Dirac distribution of particles at the microscopic scale in order to describe the stopping of a granular mass when the driving forces are under the Coulomb threshold. Comparisons with analytical solutions for dam break problems and experimental results show the efficiency of the model in dealing with significant discontinuities and reproducing the flowing and stopping phase of granular avalanches. The ability of the model to describe debris avalanche behavior is illustrated here by schematic numerical simulation of an avalanche over simplified topography. Coulomb‐type behavior with constant and variable friction angle is compared in the framework of this simple example. Numerical tests show that such an approach not only provides insights into the flowing and stopping stage of the granular mass but allows observation of interesting behavior such as the existence of a fluid‐like zone behind a stopped solid‐like granular mass in specific situations, suggesting the presence of horizontal surfaces in the deposited mass.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2002JB002024</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>avalanche modeling ; Computer Science ; Coulomb friction ; Earth Sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Engineering Sciences ; Exact sciences and technology ; finite volume kinetic scheme ; Fluids mechanics ; Geophysics ; gravitational flow ; Mathematics ; Mechanics ; Modeling and Simulation ; Natural hazards: prediction, damages, etc ; Numerical Analysis ; Saint Venant equations ; Sciences of the Universe</subject><ispartof>Journal of Geophysical Research, 2003-11, Vol.108 (B11), p.EPM9.1-n/a</ispartof><rights>Copyright 2003 by the American Geophysical Union.</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5999-9bc33aada3b8f56c9a1e100868a66175f6bfc3651ecc9302d874641f82db5be3</citedby><cites>FETCH-LOGICAL-a5999-9bc33aada3b8f56c9a1e100868a66175f6bfc3651ecc9302d874641f82db5be3</cites><orcidid>0000-0002-6085-6498 ; 0000-0002-7733-4645 ; 0000-0002-2545-1655 ; 0000-0002-7091-1200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2002JB002024$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2002JB002024$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15392223$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00922781$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mangeney-Castelnau, A.</creatorcontrib><creatorcontrib>Vilotte, J.-P.</creatorcontrib><creatorcontrib>Bristeau, M. O.</creatorcontrib><creatorcontrib>Perthame, B.</creatorcontrib><creatorcontrib>Bouchut, F.</creatorcontrib><creatorcontrib>Simeoni, C.</creatorcontrib><creatorcontrib>Yerneni, S.</creatorcontrib><title>Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Numerical modeling of debris avalanche is presented here. The model uses the long‐wave approximation based on the small aspect ratio of debris avalanches as in classical Saint Venant model of shallow water. Depth‐averaged equations using this approximation are derived in a reference frame linked to the topography. Debris avalanche is treated here as a single‐phase, dry granular flow with Coulomb‐type behavior. The numerical finite volume method uses a kinetic scheme based on the description of the microscopic behavior of the system to define numerical fluxes at the interfaces of a finite element mesh. The main advantage of this method is to preserve the height positivity. The originality of the presented scheme stands in the introduction of a Dirac distribution of particles at the microscopic scale in order to describe the stopping of a granular mass when the driving forces are under the Coulomb threshold. Comparisons with analytical solutions for dam break problems and experimental results show the efficiency of the model in dealing with significant discontinuities and reproducing the flowing and stopping phase of granular avalanches. The ability of the model to describe debris avalanche behavior is illustrated here by schematic numerical simulation of an avalanche over simplified topography. Coulomb‐type behavior with constant and variable friction angle is compared in the framework of this simple example. Numerical tests show that such an approach not only provides insights into the flowing and stopping stage of the granular mass but allows observation of interesting behavior such as the existence of a fluid‐like zone behind a stopped solid‐like granular mass in specific situations, suggesting the presence of horizontal surfaces in the deposited mass.</description><subject>avalanche modeling</subject><subject>Computer Science</subject><subject>Coulomb friction</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>finite volume kinetic scheme</subject><subject>Fluids mechanics</subject><subject>Geophysics</subject><subject>gravitational flow</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Modeling and Simulation</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Numerical Analysis</subject><subject>Saint Venant equations</subject><subject>Sciences of the Universe</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhS0EEqPSHQ_gDUhIBK7t2LGXnRFMGY0GqYzo0rpxHGqanzZOCn17HKUqrAAvfGXrO0f36BDyksE7Bty85wB8t04X8PwJWXEmVcbT4ylZAct1BpwXz8lpjN8hnVyqHNiKXB6m1g_BYUPbvvJN6L7RvqZ4hw127spHWmL0Fe07-gVDN9KvvsM0_O2EY-i7SKc4a5Beh86PwdGYVK1_QZ7V2ER_-jBPyPHjh-PmPNt_3n7anO0zlMaYzJROCMQKRalrqZxB5hmAVhqVYoWsVVk7oSTzzhkBvNJFrnJWa16VsvTihLxZbK-wsTdDaHG4tz0Ge362t_MfgEm5NbtjiX29sDdDfzv5ONo2ROebFNT3U7QJMyDA_A-odcH_DTLDtAA9g28X0A19jIOvH3dlYOf27J_tJfzVgy_G1Ew9pCpC_K2RIoXiInFi4X6Ext__1dPuthdrJmQ-L5MtqhBH__NRhcO1VYUopL08bO3meLHebTcHW4hf_2S1Mg</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Mangeney-Castelnau, A.</creator><creator>Vilotte, J.-P.</creator><creator>Bristeau, M. O.</creator><creator>Perthame, B.</creator><creator>Bouchut, F.</creator><creator>Simeoni, C.</creator><creator>Yerneni, S.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SM</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6085-6498</orcidid><orcidid>https://orcid.org/0000-0002-7733-4645</orcidid><orcidid>https://orcid.org/0000-0002-2545-1655</orcidid><orcidid>https://orcid.org/0000-0002-7091-1200</orcidid></search><sort><creationdate>200311</creationdate><title>Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme</title><author>Mangeney-Castelnau, A. ; Vilotte, J.-P. ; Bristeau, M. O. ; Perthame, B. ; Bouchut, F. ; Simeoni, C. ; Yerneni, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5999-9bc33aada3b8f56c9a1e100868a66175f6bfc3651ecc9302d874641f82db5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>avalanche modeling</topic><topic>Computer Science</topic><topic>Coulomb friction</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>finite volume kinetic scheme</topic><topic>Fluids mechanics</topic><topic>Geophysics</topic><topic>gravitational flow</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Modeling and Simulation</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Numerical Analysis</topic><topic>Saint Venant equations</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangeney-Castelnau, A.</creatorcontrib><creatorcontrib>Vilotte, J.-P.</creatorcontrib><creatorcontrib>Bristeau, M. O.</creatorcontrib><creatorcontrib>Perthame, B.</creatorcontrib><creatorcontrib>Bouchut, F.</creatorcontrib><creatorcontrib>Simeoni, C.</creatorcontrib><creatorcontrib>Yerneni, S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earthquake Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangeney-Castelnau, A.</au><au>Vilotte, J.-P.</au><au>Bristeau, M. O.</au><au>Perthame, B.</au><au>Bouchut, F.</au><au>Simeoni, C.</au><au>Yerneni, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2003-11</date><risdate>2003</risdate><volume>108</volume><issue>B11</issue><spage>EPM9.1</spage><epage>n/a</epage><pages>EPM9.1-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Numerical modeling of debris avalanche is presented here. The model uses the long‐wave approximation based on the small aspect ratio of debris avalanches as in classical Saint Venant model of shallow water. Depth‐averaged equations using this approximation are derived in a reference frame linked to the topography. Debris avalanche is treated here as a single‐phase, dry granular flow with Coulomb‐type behavior. The numerical finite volume method uses a kinetic scheme based on the description of the microscopic behavior of the system to define numerical fluxes at the interfaces of a finite element mesh. The main advantage of this method is to preserve the height positivity. The originality of the presented scheme stands in the introduction of a Dirac distribution of particles at the microscopic scale in order to describe the stopping of a granular mass when the driving forces are under the Coulomb threshold. Comparisons with analytical solutions for dam break problems and experimental results show the efficiency of the model in dealing with significant discontinuities and reproducing the flowing and stopping phase of granular avalanches. The ability of the model to describe debris avalanche behavior is illustrated here by schematic numerical simulation of an avalanche over simplified topography. Coulomb‐type behavior with constant and variable friction angle is compared in the framework of this simple example. Numerical tests show that such an approach not only provides insights into the flowing and stopping stage of the granular mass but allows observation of interesting behavior such as the existence of a fluid‐like zone behind a stopped solid‐like granular mass in specific situations, suggesting the presence of horizontal surfaces in the deposited mass.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2002JB002024</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6085-6498</orcidid><orcidid>https://orcid.org/0000-0002-7733-4645</orcidid><orcidid>https://orcid.org/0000-0002-2545-1655</orcidid><orcidid>https://orcid.org/0000-0002-7091-1200</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2003-11, Vol.108 (B11), p.EPM9.1-n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_hal_primary_oai_HAL_hal_00922781v1
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects avalanche modeling
Computer Science
Coulomb friction
Earth Sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Engineering geology
Engineering Sciences
Exact sciences and technology
finite volume kinetic scheme
Fluids mechanics
Geophysics
gravitational flow
Mathematics
Mechanics
Modeling and Simulation
Natural hazards: prediction, damages, etc
Numerical Analysis
Saint Venant equations
Sciences of the Universe
title Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20avalanches%20based%20on%20Saint%20Venant%20equations%20using%20a%20kinetic%20scheme&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Mangeney-Castelnau,%20A.&rft.date=2003-11&rft.volume=108&rft.issue=B11&rft.spage=EPM9.1&rft.epage=n/a&rft.pages=EPM9.1-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2002JB002024&rft_dat=%3Cproquest_hal_p%3E27890309%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19183089&rft_id=info:pmid/&rfr_iscdi=true