Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency

Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2014-01, Vol.201 (1), p.155-167
Hauptverfasser: Fourcroy, Pierre, Sisó‐Terraza, Patricia, Sudre, Damien, Savirón, María, Reyt, Guilhem, Gaymard, Frédéric, Abadía, Anunciación, Abadia, Javier, Álvarez‐Fernández, Ana, Briat, Jean‐François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 1
container_start_page 155
container_title The New phytologist
container_volume 201
creator Fourcroy, Pierre
Sisó‐Terraza, Patricia
Sudre, Damien
Savirón, María
Reyt, Guilhem
Gaymard, Frédéric
Abadía, Anunciación
Abadia, Javier
Álvarez‐Fernández, Ana
Briat, Jean‐François
description Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are largely unknown. We used HPLC/ESI-MS (TOF) and HPLC/ESI-MS/MS (ion trap) to characterize fluorescent phenolic-type compounds accumulated in roots or exported to the culture medium of Arabidopsis plants in response to Fe deficiency. Wild-type and mutant plants altered either in phenylpropanoid biosynthesis or in the ABCG37 (PDR9) ABC transporter were grown under standard or Fe-deficient nutrition conditions and compared. Fe deficiency upregulates the expression of genes encoding enzymes of the phenylpropanoid pathway and leads to the synthesis and secretion of phenolic compounds belonging to the coumarin family. The ABCG37 gene is also upregulated in response to Fe deficiency and coumarin export is impaired in pdr9 mutant plants. Therefore it can be concluded that: Fe deficiency induces the secretion of coumarin compounds by Arabidopsis roots; the ABCG37 ABC transporter is required for this secretion to take place; and these compounds improved plant Fe nutrition.
doi_str_mv 10.1111/nph.12471
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00921475v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.201.1.155</jstor_id><sourcerecordid>newphytologist.201.1.155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5531-d5cdbe4249942c16dbed8b534234ce39d2115c9d6e0329143aec6f4f01a481bf3</originalsourceid><addsrcrecordid>eNqFkkGPEyEUxydG49bVg1_AkHjRw-zyGKAzx26j200a9aCJN8IwbyzNFEag3czdDy7drj14UDjAg9__H3jvFcVroFeQx7UbN1fA-ByeFDPgsilrqOZPixmlrC4ll98vihcxbimljZDseXHBOAVRUzYrft25gx8OuEOXiO9J2iBZ3CxvqzlJQbs4-pAwEOtIRBMwWe-OWDR-9EMOHdGuIx0Ge9DJHjCSdiKLoFvb-THaSIL3KR71AbOZi0iSJzZkmw57ayw6M70snvV6iPjqcb0svn388HW5Ktefb--Wi3VphKig7ITpWuSMNw1nBmQOuroVFWcVN1g1HQMQpukk0oo1wCuNRva8p6B5DW1fXRbvT74bPagx2J0Ok_LaqtVirY5nOUEM-FwcILPvTuwY_M89xqR2NhocBu3Q76MCwTg_JrH6P8olg1pyLjP69i906_fB5U8rJkDOGa-l-BeVvUCyhguWqTeP1L7dYXf-0J_iZuD6BNzbAafzPVB17BqVu0Y9dI369GX1sMmK8qTYxuTDWeHwftxMyQ_-h82PYRRUnrkmvwEsysMO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461629452</pqid></control><display><type>article</type><title>Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency</title><source>MEDLINE</source><source>Wiley Journals</source><source>Jstor Complete Legacy</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Fourcroy, Pierre ; Sisó‐Terraza, Patricia ; Sudre, Damien ; Savirón, María ; Reyt, Guilhem ; Gaymard, Frédéric ; Abadía, Anunciación ; Abadia, Javier ; Álvarez‐Fernández, Ana ; Briat, Jean‐François</creator><creatorcontrib>Fourcroy, Pierre ; Sisó‐Terraza, Patricia ; Sudre, Damien ; Savirón, María ; Reyt, Guilhem ; Gaymard, Frédéric ; Abadía, Anunciación ; Abadia, Javier ; Álvarez‐Fernández, Ana ; Briat, Jean‐François</creatorcontrib><description>Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are largely unknown. We used HPLC/ESI-MS (TOF) and HPLC/ESI-MS/MS (ion trap) to characterize fluorescent phenolic-type compounds accumulated in roots or exported to the culture medium of Arabidopsis plants in response to Fe deficiency. Wild-type and mutant plants altered either in phenylpropanoid biosynthesis or in the ABCG37 (PDR9) ABC transporter were grown under standard or Fe-deficient nutrition conditions and compared. Fe deficiency upregulates the expression of genes encoding enzymes of the phenylpropanoid pathway and leads to the synthesis and secretion of phenolic compounds belonging to the coumarin family. The ABCG37 gene is also upregulated in response to Fe deficiency and coumarin export is impaired in pdr9 mutant plants. Therefore it can be concluded that: Fe deficiency induces the secretion of coumarin compounds by Arabidopsis roots; the ABCG37 ABC transporter is required for this secretion to take place; and these compounds improved plant Fe nutrition.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12471</identifier><identifier>PMID: 24015802</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>ABC transporter ; ABC transporters ; Adaptation, Physiological - genetics ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; ATP Binding Cassette Transporter, Subfamily G ; ATP binding cassette transporters ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; Biological Transport ; Biosynthesis ; Coumarin ; Coumarins ; Culture media ; Fluorescence ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Glucosides ; High-performance liquid chromatography ; HPLC ; Hypochromic anemia ; Iron ; iron (Fe) nutrition ; Iron - deficiency ; Life Sciences ; Liquid chromatography ; Metabolic Networks and Pathways ; Mutants ; Mutation ; Nutrient deficiency ; Nutrition ; Phenolic compounds ; Phenols ; Plant nutrition ; Plant physiology ; Plant roots ; Plant Roots - metabolism ; Plants ; root secretion ; Roots ; Scopoletin - metabolism ; Secretion ; Siderophores ; Stress, Physiological - genetics ; Tandem Mass Spectrometry ; Transport ; Transportation systems ; Up-Regulation ; Uptake ; Vegetal Biology</subject><ispartof>The New phytologist, 2014-01, Vol.201 (1), p.155-167</ispartof><rights>2014 New Phytologist Trust</rights><rights>2013 CNRS. © 2013 New Phytologist Trust</rights><rights>2013 CNRS. New Phytologist © 2013 New Phytologist Trust.</rights><rights>Copyright © 2013 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5531-d5cdbe4249942c16dbed8b534234ce39d2115c9d6e0329143aec6f4f01a481bf3</citedby><orcidid>0000-0003-4278-2787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.201.1.155$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.201.1.155$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24015802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00921475$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fourcroy, Pierre</creatorcontrib><creatorcontrib>Sisó‐Terraza, Patricia</creatorcontrib><creatorcontrib>Sudre, Damien</creatorcontrib><creatorcontrib>Savirón, María</creatorcontrib><creatorcontrib>Reyt, Guilhem</creatorcontrib><creatorcontrib>Gaymard, Frédéric</creatorcontrib><creatorcontrib>Abadía, Anunciación</creatorcontrib><creatorcontrib>Abadia, Javier</creatorcontrib><creatorcontrib>Álvarez‐Fernández, Ana</creatorcontrib><creatorcontrib>Briat, Jean‐François</creatorcontrib><title>Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are largely unknown. We used HPLC/ESI-MS (TOF) and HPLC/ESI-MS/MS (ion trap) to characterize fluorescent phenolic-type compounds accumulated in roots or exported to the culture medium of Arabidopsis plants in response to Fe deficiency. Wild-type and mutant plants altered either in phenylpropanoid biosynthesis or in the ABCG37 (PDR9) ABC transporter were grown under standard or Fe-deficient nutrition conditions and compared. Fe deficiency upregulates the expression of genes encoding enzymes of the phenylpropanoid pathway and leads to the synthesis and secretion of phenolic compounds belonging to the coumarin family. The ABCG37 gene is also upregulated in response to Fe deficiency and coumarin export is impaired in pdr9 mutant plants. Therefore it can be concluded that: Fe deficiency induces the secretion of coumarin compounds by Arabidopsis roots; the ABCG37 ABC transporter is required for this secretion to take place; and these compounds improved plant Fe nutrition.</description><subject>ABC transporter</subject><subject>ABC transporters</subject><subject>Adaptation, Physiological - genetics</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>ATP Binding Cassette Transporter, Subfamily G</subject><subject>ATP binding cassette transporters</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Biological Transport</subject><subject>Biosynthesis</subject><subject>Coumarin</subject><subject>Coumarins</subject><subject>Culture media</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Glucosides</subject><subject>High-performance liquid chromatography</subject><subject>HPLC</subject><subject>Hypochromic anemia</subject><subject>Iron</subject><subject>iron (Fe) nutrition</subject><subject>Iron - deficiency</subject><subject>Life Sciences</subject><subject>Liquid chromatography</subject><subject>Metabolic Networks and Pathways</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nutrient deficiency</subject><subject>Nutrition</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Plant nutrition</subject><subject>Plant physiology</subject><subject>Plant roots</subject><subject>Plant Roots - metabolism</subject><subject>Plants</subject><subject>root secretion</subject><subject>Roots</subject><subject>Scopoletin - metabolism</subject><subject>Secretion</subject><subject>Siderophores</subject><subject>Stress, Physiological - genetics</subject><subject>Tandem Mass Spectrometry</subject><subject>Transport</subject><subject>Transportation systems</subject><subject>Up-Regulation</subject><subject>Uptake</subject><subject>Vegetal Biology</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkGPEyEUxydG49bVg1_AkHjRw-zyGKAzx26j200a9aCJN8IwbyzNFEag3czdDy7drj14UDjAg9__H3jvFcVroFeQx7UbN1fA-ByeFDPgsilrqOZPixmlrC4ll98vihcxbimljZDseXHBOAVRUzYrft25gx8OuEOXiO9J2iBZ3CxvqzlJQbs4-pAwEOtIRBMwWe-OWDR-9EMOHdGuIx0Ge9DJHjCSdiKLoFvb-THaSIL3KR71AbOZi0iSJzZkmw57ayw6M70snvV6iPjqcb0svn388HW5Ktefb--Wi3VphKig7ITpWuSMNw1nBmQOuroVFWcVN1g1HQMQpukk0oo1wCuNRva8p6B5DW1fXRbvT74bPagx2J0Ok_LaqtVirY5nOUEM-FwcILPvTuwY_M89xqR2NhocBu3Q76MCwTg_JrH6P8olg1pyLjP69i906_fB5U8rJkDOGa-l-BeVvUCyhguWqTeP1L7dYXf-0J_iZuD6BNzbAafzPVB17BqVu0Y9dI369GX1sMmK8qTYxuTDWeHwftxMyQ_-h82PYRRUnrkmvwEsysMO</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Fourcroy, Pierre</creator><creator>Sisó‐Terraza, Patricia</creator><creator>Sudre, Damien</creator><creator>Savirón, María</creator><creator>Reyt, Guilhem</creator><creator>Gaymard, Frédéric</creator><creator>Abadía, Anunciación</creator><creator>Abadia, Javier</creator><creator>Álvarez‐Fernández, Ana</creator><creator>Briat, Jean‐François</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>H98</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4278-2787</orcidid></search><sort><creationdate>201401</creationdate><title>Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency</title><author>Fourcroy, Pierre ; Sisó‐Terraza, Patricia ; Sudre, Damien ; Savirón, María ; Reyt, Guilhem ; Gaymard, Frédéric ; Abadía, Anunciación ; Abadia, Javier ; Álvarez‐Fernández, Ana ; Briat, Jean‐François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5531-d5cdbe4249942c16dbed8b534234ce39d2115c9d6e0329143aec6f4f01a481bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ABC transporter</topic><topic>ABC transporters</topic><topic>Adaptation, Physiological - genetics</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>ATP Binding Cassette Transporter, Subfamily G</topic><topic>ATP binding cassette transporters</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Biological Transport</topic><topic>Biosynthesis</topic><topic>Coumarin</topic><topic>Coumarins</topic><topic>Culture media</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Glucosides</topic><topic>High-performance liquid chromatography</topic><topic>HPLC</topic><topic>Hypochromic anemia</topic><topic>Iron</topic><topic>iron (Fe) nutrition</topic><topic>Iron - deficiency</topic><topic>Life Sciences</topic><topic>Liquid chromatography</topic><topic>Metabolic Networks and Pathways</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nutrient deficiency</topic><topic>Nutrition</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Plant nutrition</topic><topic>Plant physiology</topic><topic>Plant roots</topic><topic>Plant Roots - metabolism</topic><topic>Plants</topic><topic>root secretion</topic><topic>Roots</topic><topic>Scopoletin - metabolism</topic><topic>Secretion</topic><topic>Siderophores</topic><topic>Stress, Physiological - genetics</topic><topic>Tandem Mass Spectrometry</topic><topic>Transport</topic><topic>Transportation systems</topic><topic>Up-Regulation</topic><topic>Uptake</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fourcroy, Pierre</creatorcontrib><creatorcontrib>Sisó‐Terraza, Patricia</creatorcontrib><creatorcontrib>Sudre, Damien</creatorcontrib><creatorcontrib>Savirón, María</creatorcontrib><creatorcontrib>Reyt, Guilhem</creatorcontrib><creatorcontrib>Gaymard, Frédéric</creatorcontrib><creatorcontrib>Abadía, Anunciación</creatorcontrib><creatorcontrib>Abadia, Javier</creatorcontrib><creatorcontrib>Álvarez‐Fernández, Ana</creatorcontrib><creatorcontrib>Briat, Jean‐François</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fourcroy, Pierre</au><au>Sisó‐Terraza, Patricia</au><au>Sudre, Damien</au><au>Savirón, María</au><au>Reyt, Guilhem</au><au>Gaymard, Frédéric</au><au>Abadía, Anunciación</au><au>Abadia, Javier</au><au>Álvarez‐Fernández, Ana</au><au>Briat, Jean‐François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2014-01</date><risdate>2014</risdate><volume>201</volume><issue>1</issue><spage>155</spage><epage>167</epage><pages>155-167</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are largely unknown. We used HPLC/ESI-MS (TOF) and HPLC/ESI-MS/MS (ion trap) to characterize fluorescent phenolic-type compounds accumulated in roots or exported to the culture medium of Arabidopsis plants in response to Fe deficiency. Wild-type and mutant plants altered either in phenylpropanoid biosynthesis or in the ABCG37 (PDR9) ABC transporter were grown under standard or Fe-deficient nutrition conditions and compared. Fe deficiency upregulates the expression of genes encoding enzymes of the phenylpropanoid pathway and leads to the synthesis and secretion of phenolic compounds belonging to the coumarin family. The ABCG37 gene is also upregulated in response to Fe deficiency and coumarin export is impaired in pdr9 mutant plants. Therefore it can be concluded that: Fe deficiency induces the secretion of coumarin compounds by Arabidopsis roots; the ABCG37 ABC transporter is required for this secretion to take place; and these compounds improved plant Fe nutrition.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>24015802</pmid><doi>10.1111/nph.12471</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4278-2787</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2014-01, Vol.201 (1), p.155-167
issn 0028-646X
1469-8137
language eng
recordid cdi_hal_primary_oai_HAL_hal_00921475v1
source MEDLINE; Wiley Journals; Jstor Complete Legacy; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects ABC transporter
ABC transporters
Adaptation, Physiological - genetics
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
ATP Binding Cassette Transporter, Subfamily G
ATP binding cassette transporters
ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - metabolism
Biological Transport
Biosynthesis
Coumarin
Coumarins
Culture media
Fluorescence
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Plant
Genes, Plant
Glucosides
High-performance liquid chromatography
HPLC
Hypochromic anemia
Iron
iron (Fe) nutrition
Iron - deficiency
Life Sciences
Liquid chromatography
Metabolic Networks and Pathways
Mutants
Mutation
Nutrient deficiency
Nutrition
Phenolic compounds
Phenols
Plant nutrition
Plant physiology
Plant roots
Plant Roots - metabolism
Plants
root secretion
Roots
Scopoletin - metabolism
Secretion
Siderophores
Stress, Physiological - genetics
Tandem Mass Spectrometry
Transport
Transportation systems
Up-Regulation
Uptake
Vegetal Biology
title Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20the%20ABCG37%20transporter%20in%20secretion%20of%20scopoletin%20and%20derivatives%20by%20Arabidopsis%20roots%20in%20response%20to%20iron%20deficiency&rft.jtitle=The%20New%20phytologist&rft.au=Fourcroy,%20Pierre&rft.date=2014-01&rft.volume=201&rft.issue=1&rft.spage=155&rft.epage=167&rft.pages=155-167&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12471&rft_dat=%3Cjstor_hal_p%3Enewphytologist.201.1.155%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461629452&rft_id=info:pmid/24015802&rft_jstor_id=newphytologist.201.1.155&rfr_iscdi=true