Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency
Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2014-01, Vol.201 (1), p.155-167 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 1 |
container_start_page | 155 |
container_title | The New phytologist |
container_volume | 201 |
creator | Fourcroy, Pierre Sisó‐Terraza, Patricia Sudre, Damien Savirón, María Reyt, Guilhem Gaymard, Frédéric Abadía, Anunciación Abadia, Javier Álvarez‐Fernández, Ana Briat, Jean‐François |
description | Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are largely unknown.
We used HPLC/ESI-MS (TOF) and HPLC/ESI-MS/MS (ion trap) to characterize fluorescent phenolic-type compounds accumulated in roots or exported to the culture medium of Arabidopsis plants in response to Fe deficiency. Wild-type and mutant plants altered either in phenylpropanoid biosynthesis or in the ABCG37 (PDR9) ABC transporter were grown under standard or Fe-deficient nutrition conditions and compared.
Fe deficiency upregulates the expression of genes encoding enzymes of the phenylpropanoid pathway and leads to the synthesis and secretion of phenolic compounds belonging to the coumarin family. The ABCG37 gene is also upregulated in response to Fe deficiency and coumarin export is impaired in pdr9 mutant plants.
Therefore it can be concluded that: Fe deficiency induces the secretion of coumarin compounds by Arabidopsis roots; the ABCG37 ABC transporter is required for this secretion to take place; and these compounds improved plant Fe nutrition. |
doi_str_mv | 10.1111/nph.12471 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00921475v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.201.1.155</jstor_id><sourcerecordid>newphytologist.201.1.155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5531-d5cdbe4249942c16dbed8b534234ce39d2115c9d6e0329143aec6f4f01a481bf3</originalsourceid><addsrcrecordid>eNqFkkGPEyEUxydG49bVg1_AkHjRw-zyGKAzx26j200a9aCJN8IwbyzNFEag3czdDy7drj14UDjAg9__H3jvFcVroFeQx7UbN1fA-ByeFDPgsilrqOZPixmlrC4ll98vihcxbimljZDseXHBOAVRUzYrft25gx8OuEOXiO9J2iBZ3CxvqzlJQbs4-pAwEOtIRBMwWe-OWDR-9EMOHdGuIx0Ge9DJHjCSdiKLoFvb-THaSIL3KR71AbOZi0iSJzZkmw57ayw6M70snvV6iPjqcb0svn388HW5Ktefb--Wi3VphKig7ITpWuSMNw1nBmQOuroVFWcVN1g1HQMQpukk0oo1wCuNRva8p6B5DW1fXRbvT74bPagx2J0Ok_LaqtVirY5nOUEM-FwcILPvTuwY_M89xqR2NhocBu3Q76MCwTg_JrH6P8olg1pyLjP69i906_fB5U8rJkDOGa-l-BeVvUCyhguWqTeP1L7dYXf-0J_iZuD6BNzbAafzPVB17BqVu0Y9dI369GX1sMmK8qTYxuTDWeHwftxMyQ_-h82PYRRUnrkmvwEsysMO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461629452</pqid></control><display><type>article</type><title>Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency</title><source>MEDLINE</source><source>Wiley Journals</source><source>Jstor Complete Legacy</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Fourcroy, Pierre ; Sisó‐Terraza, Patricia ; Sudre, Damien ; Savirón, María ; Reyt, Guilhem ; Gaymard, Frédéric ; Abadía, Anunciación ; Abadia, Javier ; Álvarez‐Fernández, Ana ; Briat, Jean‐François</creator><creatorcontrib>Fourcroy, Pierre ; Sisó‐Terraza, Patricia ; Sudre, Damien ; Savirón, María ; Reyt, Guilhem ; Gaymard, Frédéric ; Abadía, Anunciación ; Abadia, Javier ; Álvarez‐Fernández, Ana ; Briat, Jean‐François</creatorcontrib><description>Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are largely unknown.
We used HPLC/ESI-MS (TOF) and HPLC/ESI-MS/MS (ion trap) to characterize fluorescent phenolic-type compounds accumulated in roots or exported to the culture medium of Arabidopsis plants in response to Fe deficiency. Wild-type and mutant plants altered either in phenylpropanoid biosynthesis or in the ABCG37 (PDR9) ABC transporter were grown under standard or Fe-deficient nutrition conditions and compared.
Fe deficiency upregulates the expression of genes encoding enzymes of the phenylpropanoid pathway and leads to the synthesis and secretion of phenolic compounds belonging to the coumarin family. The ABCG37 gene is also upregulated in response to Fe deficiency and coumarin export is impaired in pdr9 mutant plants.
Therefore it can be concluded that: Fe deficiency induces the secretion of coumarin compounds by Arabidopsis roots; the ABCG37 ABC transporter is required for this secretion to take place; and these compounds improved plant Fe nutrition.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12471</identifier><identifier>PMID: 24015802</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>ABC transporter ; ABC transporters ; Adaptation, Physiological - genetics ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; ATP Binding Cassette Transporter, Subfamily G ; ATP binding cassette transporters ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; Biological Transport ; Biosynthesis ; Coumarin ; Coumarins ; Culture media ; Fluorescence ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Glucosides ; High-performance liquid chromatography ; HPLC ; Hypochromic anemia ; Iron ; iron (Fe) nutrition ; Iron - deficiency ; Life Sciences ; Liquid chromatography ; Metabolic Networks and Pathways ; Mutants ; Mutation ; Nutrient deficiency ; Nutrition ; Phenolic compounds ; Phenols ; Plant nutrition ; Plant physiology ; Plant roots ; Plant Roots - metabolism ; Plants ; root secretion ; Roots ; Scopoletin - metabolism ; Secretion ; Siderophores ; Stress, Physiological - genetics ; Tandem Mass Spectrometry ; Transport ; Transportation systems ; Up-Regulation ; Uptake ; Vegetal Biology</subject><ispartof>The New phytologist, 2014-01, Vol.201 (1), p.155-167</ispartof><rights>2014 New Phytologist Trust</rights><rights>2013 CNRS. © 2013 New Phytologist Trust</rights><rights>2013 CNRS. New Phytologist © 2013 New Phytologist Trust.</rights><rights>Copyright © 2013 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5531-d5cdbe4249942c16dbed8b534234ce39d2115c9d6e0329143aec6f4f01a481bf3</citedby><orcidid>0000-0003-4278-2787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.201.1.155$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.201.1.155$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24015802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00921475$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fourcroy, Pierre</creatorcontrib><creatorcontrib>Sisó‐Terraza, Patricia</creatorcontrib><creatorcontrib>Sudre, Damien</creatorcontrib><creatorcontrib>Savirón, María</creatorcontrib><creatorcontrib>Reyt, Guilhem</creatorcontrib><creatorcontrib>Gaymard, Frédéric</creatorcontrib><creatorcontrib>Abadía, Anunciación</creatorcontrib><creatorcontrib>Abadia, Javier</creatorcontrib><creatorcontrib>Álvarez‐Fernández, Ana</creatorcontrib><creatorcontrib>Briat, Jean‐François</creatorcontrib><title>Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are largely unknown.
We used HPLC/ESI-MS (TOF) and HPLC/ESI-MS/MS (ion trap) to characterize fluorescent phenolic-type compounds accumulated in roots or exported to the culture medium of Arabidopsis plants in response to Fe deficiency. Wild-type and mutant plants altered either in phenylpropanoid biosynthesis or in the ABCG37 (PDR9) ABC transporter were grown under standard or Fe-deficient nutrition conditions and compared.
Fe deficiency upregulates the expression of genes encoding enzymes of the phenylpropanoid pathway and leads to the synthesis and secretion of phenolic compounds belonging to the coumarin family. The ABCG37 gene is also upregulated in response to Fe deficiency and coumarin export is impaired in pdr9 mutant plants.
Therefore it can be concluded that: Fe deficiency induces the secretion of coumarin compounds by Arabidopsis roots; the ABCG37 ABC transporter is required for this secretion to take place; and these compounds improved plant Fe nutrition.</description><subject>ABC transporter</subject><subject>ABC transporters</subject><subject>Adaptation, Physiological - genetics</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>ATP Binding Cassette Transporter, Subfamily G</subject><subject>ATP binding cassette transporters</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Biological Transport</subject><subject>Biosynthesis</subject><subject>Coumarin</subject><subject>Coumarins</subject><subject>Culture media</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Glucosides</subject><subject>High-performance liquid chromatography</subject><subject>HPLC</subject><subject>Hypochromic anemia</subject><subject>Iron</subject><subject>iron (Fe) nutrition</subject><subject>Iron - deficiency</subject><subject>Life Sciences</subject><subject>Liquid chromatography</subject><subject>Metabolic Networks and Pathways</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nutrient deficiency</subject><subject>Nutrition</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Plant nutrition</subject><subject>Plant physiology</subject><subject>Plant roots</subject><subject>Plant Roots - metabolism</subject><subject>Plants</subject><subject>root secretion</subject><subject>Roots</subject><subject>Scopoletin - metabolism</subject><subject>Secretion</subject><subject>Siderophores</subject><subject>Stress, Physiological - genetics</subject><subject>Tandem Mass Spectrometry</subject><subject>Transport</subject><subject>Transportation systems</subject><subject>Up-Regulation</subject><subject>Uptake</subject><subject>Vegetal Biology</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkGPEyEUxydG49bVg1_AkHjRw-zyGKAzx26j200a9aCJN8IwbyzNFEag3czdDy7drj14UDjAg9__H3jvFcVroFeQx7UbN1fA-ByeFDPgsilrqOZPixmlrC4ll98vihcxbimljZDseXHBOAVRUzYrft25gx8OuEOXiO9J2iBZ3CxvqzlJQbs4-pAwEOtIRBMwWe-OWDR-9EMOHdGuIx0Ge9DJHjCSdiKLoFvb-THaSIL3KR71AbOZi0iSJzZkmw57ayw6M70snvV6iPjqcb0svn388HW5Ktefb--Wi3VphKig7ITpWuSMNw1nBmQOuroVFWcVN1g1HQMQpukk0oo1wCuNRva8p6B5DW1fXRbvT74bPagx2J0Ok_LaqtVirY5nOUEM-FwcILPvTuwY_M89xqR2NhocBu3Q76MCwTg_JrH6P8olg1pyLjP69i906_fB5U8rJkDOGa-l-BeVvUCyhguWqTeP1L7dYXf-0J_iZuD6BNzbAafzPVB17BqVu0Y9dI369GX1sMmK8qTYxuTDWeHwftxMyQ_-h82PYRRUnrkmvwEsysMO</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Fourcroy, Pierre</creator><creator>Sisó‐Terraza, Patricia</creator><creator>Sudre, Damien</creator><creator>Savirón, María</creator><creator>Reyt, Guilhem</creator><creator>Gaymard, Frédéric</creator><creator>Abadía, Anunciación</creator><creator>Abadia, Javier</creator><creator>Álvarez‐Fernández, Ana</creator><creator>Briat, Jean‐François</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>H98</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4278-2787</orcidid></search><sort><creationdate>201401</creationdate><title>Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency</title><author>Fourcroy, Pierre ; Sisó‐Terraza, Patricia ; Sudre, Damien ; Savirón, María ; Reyt, Guilhem ; Gaymard, Frédéric ; Abadía, Anunciación ; Abadia, Javier ; Álvarez‐Fernández, Ana ; Briat, Jean‐François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5531-d5cdbe4249942c16dbed8b534234ce39d2115c9d6e0329143aec6f4f01a481bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ABC transporter</topic><topic>ABC transporters</topic><topic>Adaptation, Physiological - genetics</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>ATP Binding Cassette Transporter, Subfamily G</topic><topic>ATP binding cassette transporters</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Biological Transport</topic><topic>Biosynthesis</topic><topic>Coumarin</topic><topic>Coumarins</topic><topic>Culture media</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Glucosides</topic><topic>High-performance liquid chromatography</topic><topic>HPLC</topic><topic>Hypochromic anemia</topic><topic>Iron</topic><topic>iron (Fe) nutrition</topic><topic>Iron - deficiency</topic><topic>Life Sciences</topic><topic>Liquid chromatography</topic><topic>Metabolic Networks and Pathways</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nutrient deficiency</topic><topic>Nutrition</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Plant nutrition</topic><topic>Plant physiology</topic><topic>Plant roots</topic><topic>Plant Roots - metabolism</topic><topic>Plants</topic><topic>root secretion</topic><topic>Roots</topic><topic>Scopoletin - metabolism</topic><topic>Secretion</topic><topic>Siderophores</topic><topic>Stress, Physiological - genetics</topic><topic>Tandem Mass Spectrometry</topic><topic>Transport</topic><topic>Transportation systems</topic><topic>Up-Regulation</topic><topic>Uptake</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fourcroy, Pierre</creatorcontrib><creatorcontrib>Sisó‐Terraza, Patricia</creatorcontrib><creatorcontrib>Sudre, Damien</creatorcontrib><creatorcontrib>Savirón, María</creatorcontrib><creatorcontrib>Reyt, Guilhem</creatorcontrib><creatorcontrib>Gaymard, Frédéric</creatorcontrib><creatorcontrib>Abadía, Anunciación</creatorcontrib><creatorcontrib>Abadia, Javier</creatorcontrib><creatorcontrib>Álvarez‐Fernández, Ana</creatorcontrib><creatorcontrib>Briat, Jean‐François</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fourcroy, Pierre</au><au>Sisó‐Terraza, Patricia</au><au>Sudre, Damien</au><au>Savirón, María</au><au>Reyt, Guilhem</au><au>Gaymard, Frédéric</au><au>Abadía, Anunciación</au><au>Abadia, Javier</au><au>Álvarez‐Fernández, Ana</au><au>Briat, Jean‐François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2014-01</date><risdate>2014</risdate><volume>201</volume><issue>1</issue><spage>155</spage><epage>167</epage><pages>155-167</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are largely unknown.
We used HPLC/ESI-MS (TOF) and HPLC/ESI-MS/MS (ion trap) to characterize fluorescent phenolic-type compounds accumulated in roots or exported to the culture medium of Arabidopsis plants in response to Fe deficiency. Wild-type and mutant plants altered either in phenylpropanoid biosynthesis or in the ABCG37 (PDR9) ABC transporter were grown under standard or Fe-deficient nutrition conditions and compared.
Fe deficiency upregulates the expression of genes encoding enzymes of the phenylpropanoid pathway and leads to the synthesis and secretion of phenolic compounds belonging to the coumarin family. The ABCG37 gene is also upregulated in response to Fe deficiency and coumarin export is impaired in pdr9 mutant plants.
Therefore it can be concluded that: Fe deficiency induces the secretion of coumarin compounds by Arabidopsis roots; the ABCG37 ABC transporter is required for this secretion to take place; and these compounds improved plant Fe nutrition.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>24015802</pmid><doi>10.1111/nph.12471</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4278-2787</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2014-01, Vol.201 (1), p.155-167 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00921475v1 |
source | MEDLINE; Wiley Journals; Jstor Complete Legacy; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | ABC transporter ABC transporters Adaptation, Physiological - genetics Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism ATP Binding Cassette Transporter, Subfamily G ATP binding cassette transporters ATP-Binding Cassette Transporters - genetics ATP-Binding Cassette Transporters - metabolism Biological Transport Biosynthesis Coumarin Coumarins Culture media Fluorescence Gene expression Gene Expression Profiling Gene Expression Regulation, Plant Genes, Plant Glucosides High-performance liquid chromatography HPLC Hypochromic anemia Iron iron (Fe) nutrition Iron - deficiency Life Sciences Liquid chromatography Metabolic Networks and Pathways Mutants Mutation Nutrient deficiency Nutrition Phenolic compounds Phenols Plant nutrition Plant physiology Plant roots Plant Roots - metabolism Plants root secretion Roots Scopoletin - metabolism Secretion Siderophores Stress, Physiological - genetics Tandem Mass Spectrometry Transport Transportation systems Up-Regulation Uptake Vegetal Biology |
title | Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20the%20ABCG37%20transporter%20in%20secretion%20of%20scopoletin%20and%20derivatives%20by%20Arabidopsis%20roots%20in%20response%20to%20iron%20deficiency&rft.jtitle=The%20New%20phytologist&rft.au=Fourcroy,%20Pierre&rft.date=2014-01&rft.volume=201&rft.issue=1&rft.spage=155&rft.epage=167&rft.pages=155-167&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12471&rft_dat=%3Cjstor_hal_p%3Enewphytologist.201.1.155%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461629452&rft_id=info:pmid/24015802&rft_jstor_id=newphytologist.201.1.155&rfr_iscdi=true |