Hydrogen Storage in High Surface Area Carbon Nanotubes Produced by Catalytic Chemical Vapor Deposition
Carbon nanotubes, mostly single- and double-walled, are prepared by a catalytic chemical vapor deposition method using H2−CH4 atmospheres with different CH4 contents. The maximum hydrogen storage at room temperatures and 10 MPa is 0.5 wt %. Contrary to expectations, purification of the carbon nanotu...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2004-08, Vol.108 (34), p.12718-12723 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12723 |
---|---|
container_issue | 34 |
container_start_page | 12718 |
container_title | The journal of physical chemistry. B |
container_volume | 108 |
creator | Bacsa, Revathi Laurent, Christophe Morishima, Ryuta Suzuki, Hiroshi Le Lay, Mikako |
description | Carbon nanotubes, mostly single- and double-walled, are prepared by a catalytic chemical vapor deposition method using H2−CH4 atmospheres with different CH4 contents. The maximum hydrogen storage at room temperatures and 10 MPa is 0.5 wt %. Contrary to expectations, purification of the carbon nanotube specimens by oxidative acid treatments or by heating in inert gas decreases the hydrogen storage. Decreasing the residual catalyst content does not necessarily lead to an increase in ASH. Moreover, increasing the specific surface area does not necessarily increase the hydrogen storage capacity. There seems to be a correlation between the pore volume at low pore diameters ( |
doi_str_mv | 10.1021/jp0312621 |
format | Article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00920911v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b546081199</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-d6d43a6686b923e8cc736d7c08128aa56fb2f037317aeb217b01eedbd298b2fb3</originalsourceid><addsrcrecordid>eNptkD9PwzAQxSMEEqUw8A28MDAEbKdxkrEKf4JUoNBSRuvsOK1LGkd2gsi3J1WrsjCc7nTvd0-653mXBN8QTMntusYBoYySI29AQor9vqLj_cwIZqfemXNrjGlIYzbwiqzLrVmqCs0aY2GpkK5QppcrNGttAVKhsVWAUrDCVOgFKtO0Qjk0tSZvpcqR6HqxgbJrtETpSm20hBItoDYW3anaON1oU517JwWUTl3s-9D7eLifp5k_eX18SscTH0aYNH7O8lEAjMVMJDRQsZRRwPJI4pjQGCBkhaAFDqKARKAEJZHARKlc5DSJe0UEQ-9657uCktdWb8B23IDm2XjCtzuME4oTQr7JHyutcc6q4nBAMN-GyQ9h9qy_Y7Vr1M8BBPvFWRREIZ9PZ_ztnd1R9vzJFz1_teNBOr42ra36r__x_QXAqoFa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrogen Storage in High Surface Area Carbon Nanotubes Produced by Catalytic Chemical Vapor Deposition</title><source>American Chemical Society Journals</source><creator>Bacsa, Revathi ; Laurent, Christophe ; Morishima, Ryuta ; Suzuki, Hiroshi ; Le Lay, Mikako</creator><creatorcontrib>Bacsa, Revathi ; Laurent, Christophe ; Morishima, Ryuta ; Suzuki, Hiroshi ; Le Lay, Mikako</creatorcontrib><description>Carbon nanotubes, mostly single- and double-walled, are prepared by a catalytic chemical vapor deposition method using H2−CH4 atmospheres with different CH4 contents. The maximum hydrogen storage at room temperatures and 10 MPa is 0.5 wt %. Contrary to expectations, purification of the carbon nanotube specimens by oxidative acid treatments or by heating in inert gas decreases the hydrogen storage. Decreasing the residual catalyst content does not necessarily lead to an increase in ASH. Moreover, increasing the specific surface area does not necessarily increase the hydrogen storage capacity. There seems to be a correlation between the pore volume at low pore diameters (<3 nm) and the hydrogen storage capacity. Contribution from nanoscale disordered carbon to the hydrogen storage cannot be ruled out.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp0312621</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Engineering Sciences ; Material chemistry ; Materials</subject><ispartof>The journal of physical chemistry. B, 2004-08, Vol.108 (34), p.12718-12723</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-d6d43a6686b923e8cc736d7c08128aa56fb2f037317aeb217b01eedbd298b2fb3</citedby><cites>FETCH-LOGICAL-a401t-d6d43a6686b923e8cc736d7c08128aa56fb2f037317aeb217b01eedbd298b2fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp0312621$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp0312621$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00920911$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bacsa, Revathi</creatorcontrib><creatorcontrib>Laurent, Christophe</creatorcontrib><creatorcontrib>Morishima, Ryuta</creatorcontrib><creatorcontrib>Suzuki, Hiroshi</creatorcontrib><creatorcontrib>Le Lay, Mikako</creatorcontrib><title>Hydrogen Storage in High Surface Area Carbon Nanotubes Produced by Catalytic Chemical Vapor Deposition</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Carbon nanotubes, mostly single- and double-walled, are prepared by a catalytic chemical vapor deposition method using H2−CH4 atmospheres with different CH4 contents. The maximum hydrogen storage at room temperatures and 10 MPa is 0.5 wt %. Contrary to expectations, purification of the carbon nanotube specimens by oxidative acid treatments or by heating in inert gas decreases the hydrogen storage. Decreasing the residual catalyst content does not necessarily lead to an increase in ASH. Moreover, increasing the specific surface area does not necessarily increase the hydrogen storage capacity. There seems to be a correlation between the pore volume at low pore diameters (<3 nm) and the hydrogen storage capacity. Contribution from nanoscale disordered carbon to the hydrogen storage cannot be ruled out.</description><subject>Chemical Sciences</subject><subject>Engineering Sciences</subject><subject>Material chemistry</subject><subject>Materials</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptkD9PwzAQxSMEEqUw8A28MDAEbKdxkrEKf4JUoNBSRuvsOK1LGkd2gsi3J1WrsjCc7nTvd0-653mXBN8QTMntusYBoYySI29AQor9vqLj_cwIZqfemXNrjGlIYzbwiqzLrVmqCs0aY2GpkK5QppcrNGttAVKhsVWAUrDCVOgFKtO0Qjk0tSZvpcqR6HqxgbJrtETpSm20hBItoDYW3anaON1oU517JwWUTl3s-9D7eLifp5k_eX18SscTH0aYNH7O8lEAjMVMJDRQsZRRwPJI4pjQGCBkhaAFDqKARKAEJZHARKlc5DSJe0UEQ-9657uCktdWb8B23IDm2XjCtzuME4oTQr7JHyutcc6q4nBAMN-GyQ9h9qy_Y7Vr1M8BBPvFWRREIZ9PZ_ztnd1R9vzJFz1_teNBOr42ra36r__x_QXAqoFa</recordid><startdate>20040826</startdate><enddate>20040826</enddate><creator>Bacsa, Revathi</creator><creator>Laurent, Christophe</creator><creator>Morishima, Ryuta</creator><creator>Suzuki, Hiroshi</creator><creator>Le Lay, Mikako</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20040826</creationdate><title>Hydrogen Storage in High Surface Area Carbon Nanotubes Produced by Catalytic Chemical Vapor Deposition</title><author>Bacsa, Revathi ; Laurent, Christophe ; Morishima, Ryuta ; Suzuki, Hiroshi ; Le Lay, Mikako</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-d6d43a6686b923e8cc736d7c08128aa56fb2f037317aeb217b01eedbd298b2fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Chemical Sciences</topic><topic>Engineering Sciences</topic><topic>Material chemistry</topic><topic>Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bacsa, Revathi</creatorcontrib><creatorcontrib>Laurent, Christophe</creatorcontrib><creatorcontrib>Morishima, Ryuta</creatorcontrib><creatorcontrib>Suzuki, Hiroshi</creatorcontrib><creatorcontrib>Le Lay, Mikako</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bacsa, Revathi</au><au>Laurent, Christophe</au><au>Morishima, Ryuta</au><au>Suzuki, Hiroshi</au><au>Le Lay, Mikako</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Storage in High Surface Area Carbon Nanotubes Produced by Catalytic Chemical Vapor Deposition</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2004-08-26</date><risdate>2004</risdate><volume>108</volume><issue>34</issue><spage>12718</spage><epage>12723</epage><pages>12718-12723</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Carbon nanotubes, mostly single- and double-walled, are prepared by a catalytic chemical vapor deposition method using H2−CH4 atmospheres with different CH4 contents. The maximum hydrogen storage at room temperatures and 10 MPa is 0.5 wt %. Contrary to expectations, purification of the carbon nanotube specimens by oxidative acid treatments or by heating in inert gas decreases the hydrogen storage. Decreasing the residual catalyst content does not necessarily lead to an increase in ASH. Moreover, increasing the specific surface area does not necessarily increase the hydrogen storage capacity. There seems to be a correlation between the pore volume at low pore diameters (<3 nm) and the hydrogen storage capacity. Contribution from nanoscale disordered carbon to the hydrogen storage cannot be ruled out.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp0312621</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2004-08, Vol.108 (34), p.12718-12723 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00920911v1 |
source | American Chemical Society Journals |
subjects | Chemical Sciences Engineering Sciences Material chemistry Materials |
title | Hydrogen Storage in High Surface Area Carbon Nanotubes Produced by Catalytic Chemical Vapor Deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Storage%20in%20High%20Surface%20Area%20Carbon%20Nanotubes%20Produced%20by%20Catalytic%20Chemical%20Vapor%20Deposition&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Bacsa,%20Revathi&rft.date=2004-08-26&rft.volume=108&rft.issue=34&rft.spage=12718&rft.epage=12723&rft.pages=12718-12723&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp0312621&rft_dat=%3Cacs_hal_p%3Eb546081199%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |