Surface characterization and biocompatibility of titanium alloys implanted with nitrogen by Hardion+ technology
In this study, the new Hardion+ micro-implanter technology was used to modify surface properties of biomedical pure titanium (CP-Ti) and Ti–6Al–4V ELI alloy by implantation of nitrogen ions. This process is based on the use of an electron cyclotron resonance ion source to produce a multienergetic io...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2012-12, Vol.23 (12), p.2953-2966 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2966 |
---|---|
container_issue | 12 |
container_start_page | 2953 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 23 |
creator | Gordin, D. M. Gloriant, T. Chane-Pane, V. Busardo, D. Mitran, V. Höche, D. Vasilescu, C. Drob, S. I. Cimpean, A. |
description | In this study, the new Hardion+ micro-implanter technology was used to modify surface properties of biomedical pure titanium (CP-Ti) and Ti–6Al–4V ELI alloy by implantation of nitrogen ions. This process is based on the use of an electron cyclotron resonance ion source to produce a multienergetic ion beam from multicharged ions. After implantation, surface analysis methods revealed the formation of titanium nitride (TiN) on the substrate surfaces. An increase in superficial hardness and a significant reduction of friction coefficient were observed for both materials when compared to non-implanted samples. Better corrosion resistance and a significant decrease in ion release rates were observed for N-implanted biomaterials due to the formation of the protective TiN layer on their surfaces. In vitro tests performed on human fetal osteoblasts indicated that the cytocompatibility of N-implanted CP-Ti and Ti–6Al–4V alloy was enhanced in comparison to that of the corresponding non treated samples. Consequently, Hardion+ implantation technique can provide titanium alloys with better qualities in terms of corrosion resistance, cell proliferation, adhesion and viability. |
doi_str_mv | 10.1007/s10856-012-4750-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00919349v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1257763737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417z-250544bfb5087160b702d01c50940bbcbe5c267c024f52ab8c90e985dc28f13d3</originalsourceid><addsrcrecordid>eNqNklGL1DAQgIMo3t7qD_BFAiIoUp2kSZM-HofnCgs-qM8hSdPdHG2zJu1J99ebpespgih5CEy-mckMH0LPCLwlAOJdIiB5VQChBRMciuMDtCJclAWTpXyIVlBzUTBewgW6TOkWAFjN-WN0QWlNJOewQuHzFFttHbZ7HbUdXfRHPfowYD002PhgQ3_IAeM7P844tHj0ox781GPddWFO2PeHTg-ja_B3P-7x4McYdm7AZsYbHZtc6g0end0PoQu7-Ql61Oouuafne42-3rz_cr0ptp8-fLy-2haWEXEsKAfOmGkNBylIBUYAbYBYDjUDY6xx3NJKWKCs5VQbaWtwteSNpbIlZVOu0eul7l536hB9r-OsgvZqc7VVpxhATeqS1Xcks68W9hDDt8mlUfU-WdflsVyYkiKVIHm_FP4DpVyIqhT5_BulwCsJlczoiz_Q2zDFIe9HEVILwSQHmimyUDaGlKJr7-cioE4-qMUHlX1QJx_UMec8P1eeTO-a-4yfAmTg5RnQyequjXqwPv3iKsGozAqtEV24lJ-GnYu_ffGv3X8Aik3MgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1197748502</pqid></control><display><type>article</type><title>Surface characterization and biocompatibility of titanium alloys implanted with nitrogen by Hardion+ technology</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gordin, D. M. ; Gloriant, T. ; Chane-Pane, V. ; Busardo, D. ; Mitran, V. ; Höche, D. ; Vasilescu, C. ; Drob, S. I. ; Cimpean, A.</creator><creatorcontrib>Gordin, D. M. ; Gloriant, T. ; Chane-Pane, V. ; Busardo, D. ; Mitran, V. ; Höche, D. ; Vasilescu, C. ; Drob, S. I. ; Cimpean, A.</creatorcontrib><description>In this study, the new Hardion+ micro-implanter technology was used to modify surface properties of biomedical pure titanium (CP-Ti) and Ti–6Al–4V ELI alloy by implantation of nitrogen ions. This process is based on the use of an electron cyclotron resonance ion source to produce a multienergetic ion beam from multicharged ions. After implantation, surface analysis methods revealed the formation of titanium nitride (TiN) on the substrate surfaces. An increase in superficial hardness and a significant reduction of friction coefficient were observed for both materials when compared to non-implanted samples. Better corrosion resistance and a significant decrease in ion release rates were observed for N-implanted biomaterials due to the formation of the protective TiN layer on their surfaces. In vitro tests performed on human fetal osteoblasts indicated that the cytocompatibility of N-implanted CP-Ti and Ti–6Al–4V alloy was enhanced in comparison to that of the corresponding non treated samples. Consequently, Hardion+ implantation technique can provide titanium alloys with better qualities in terms of corrosion resistance, cell proliferation, adhesion and viability.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-012-4750-z</identifier><identifier>PMID: 22918550</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys - chemistry ; Biocompatibility ; Biocompatible Materials - chemistry ; Biological and medical sciences ; Biomaterials ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Cell Adhesion ; Cell Proliferation ; Cell Survival ; Ceramics ; Chemical Sciences ; Chemistry and Materials Science ; Composites ; Corrosion ; Corrosion resistance ; Extracellular Matrix - metabolism ; Fibronectins - chemistry ; Friction ; Glass ; Humans ; Ion implantation ; Ions ; Mass Spectrometry - methods ; Material chemistry ; Materials Science ; Materials Testing ; Medical sciences ; Natural Materials ; Nitrogen ; Nitrogen - chemistry ; Nitrogen - metabolism ; Osteoblasts - cytology ; Polymer Sciences ; Prostheses and Implants ; Regenerative Medicine/Tissue Engineering ; Surface Properties ; Surfaces and Interfaces ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; Temperature ; Thin Films ; Titanium - chemistry ; Titanium alloys ; Titanium base alloys ; Titanium nitride</subject><ispartof>Journal of materials science. Materials in medicine, 2012-12, Vol.23 (12), p.2953-2966</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>2014 INIST-CNRS</rights><rights>Springer Science+Business Media New York 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417z-250544bfb5087160b702d01c50940bbcbe5c267c024f52ab8c90e985dc28f13d3</citedby><cites>FETCH-LOGICAL-c417z-250544bfb5087160b702d01c50940bbcbe5c267c024f52ab8c90e985dc28f13d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-012-4750-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-012-4750-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26742845$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22918550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00919349$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gordin, D. M.</creatorcontrib><creatorcontrib>Gloriant, T.</creatorcontrib><creatorcontrib>Chane-Pane, V.</creatorcontrib><creatorcontrib>Busardo, D.</creatorcontrib><creatorcontrib>Mitran, V.</creatorcontrib><creatorcontrib>Höche, D.</creatorcontrib><creatorcontrib>Vasilescu, C.</creatorcontrib><creatorcontrib>Drob, S. I.</creatorcontrib><creatorcontrib>Cimpean, A.</creatorcontrib><title>Surface characterization and biocompatibility of titanium alloys implanted with nitrogen by Hardion+ technology</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>In this study, the new Hardion+ micro-implanter technology was used to modify surface properties of biomedical pure titanium (CP-Ti) and Ti–6Al–4V ELI alloy by implantation of nitrogen ions. This process is based on the use of an electron cyclotron resonance ion source to produce a multienergetic ion beam from multicharged ions. After implantation, surface analysis methods revealed the formation of titanium nitride (TiN) on the substrate surfaces. An increase in superficial hardness and a significant reduction of friction coefficient were observed for both materials when compared to non-implanted samples. Better corrosion resistance and a significant decrease in ion release rates were observed for N-implanted biomaterials due to the formation of the protective TiN layer on their surfaces. In vitro tests performed on human fetal osteoblasts indicated that the cytocompatibility of N-implanted CP-Ti and Ti–6Al–4V alloy was enhanced in comparison to that of the corresponding non treated samples. Consequently, Hardion+ implantation technique can provide titanium alloys with better qualities in terms of corrosion resistance, cell proliferation, adhesion and viability.</description><subject>Alloys - chemistry</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Cell Adhesion</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Ceramics</subject><subject>Chemical Sciences</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fibronectins - chemistry</subject><subject>Friction</subject><subject>Glass</subject><subject>Humans</subject><subject>Ion implantation</subject><subject>Ions</subject><subject>Mass Spectrometry - methods</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Natural Materials</subject><subject>Nitrogen</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogen - metabolism</subject><subject>Osteoblasts - cytology</subject><subject>Polymer Sciences</subject><subject>Prostheses and Implants</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Surface Properties</subject><subject>Surfaces and Interfaces</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Temperature</subject><subject>Thin Films</subject><subject>Titanium - chemistry</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Titanium nitride</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNklGL1DAQgIMo3t7qD_BFAiIoUp2kSZM-HofnCgs-qM8hSdPdHG2zJu1J99ebpespgih5CEy-mckMH0LPCLwlAOJdIiB5VQChBRMciuMDtCJclAWTpXyIVlBzUTBewgW6TOkWAFjN-WN0QWlNJOewQuHzFFttHbZ7HbUdXfRHPfowYD002PhgQ3_IAeM7P844tHj0ox781GPddWFO2PeHTg-ja_B3P-7x4McYdm7AZsYbHZtc6g0end0PoQu7-Ql61Oouuafne42-3rz_cr0ptp8-fLy-2haWEXEsKAfOmGkNBylIBUYAbYBYDjUDY6xx3NJKWKCs5VQbaWtwteSNpbIlZVOu0eul7l536hB9r-OsgvZqc7VVpxhATeqS1Xcks68W9hDDt8mlUfU-WdflsVyYkiKVIHm_FP4DpVyIqhT5_BulwCsJlczoiz_Q2zDFIe9HEVILwSQHmimyUDaGlKJr7-cioE4-qMUHlX1QJx_UMec8P1eeTO-a-4yfAmTg5RnQyequjXqwPv3iKsGozAqtEV24lJ-GnYu_ffGv3X8Aik3MgA</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Gordin, D. M.</creator><creator>Gloriant, T.</creator><creator>Chane-Pane, V.</creator><creator>Busardo, D.</creator><creator>Mitran, V.</creator><creator>Höche, D.</creator><creator>Vasilescu, C.</creator><creator>Drob, S. I.</creator><creator>Cimpean, A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>201212</creationdate><title>Surface characterization and biocompatibility of titanium alloys implanted with nitrogen by Hardion+ technology</title><author>Gordin, D. M. ; Gloriant, T. ; Chane-Pane, V. ; Busardo, D. ; Mitran, V. ; Höche, D. ; Vasilescu, C. ; Drob, S. I. ; Cimpean, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417z-250544bfb5087160b702d01c50940bbcbe5c267c024f52ab8c90e985dc28f13d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloys - chemistry</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Cell Adhesion</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Ceramics</topic><topic>Chemical Sciences</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fibronectins - chemistry</topic><topic>Friction</topic><topic>Glass</topic><topic>Humans</topic><topic>Ion implantation</topic><topic>Ions</topic><topic>Mass Spectrometry - methods</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Natural Materials</topic><topic>Nitrogen</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogen - metabolism</topic><topic>Osteoblasts - cytology</topic><topic>Polymer Sciences</topic><topic>Prostheses and Implants</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Surface Properties</topic><topic>Surfaces and Interfaces</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Temperature</topic><topic>Thin Films</topic><topic>Titanium - chemistry</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordin, D. M.</creatorcontrib><creatorcontrib>Gloriant, T.</creatorcontrib><creatorcontrib>Chane-Pane, V.</creatorcontrib><creatorcontrib>Busardo, D.</creatorcontrib><creatorcontrib>Mitran, V.</creatorcontrib><creatorcontrib>Höche, D.</creatorcontrib><creatorcontrib>Vasilescu, C.</creatorcontrib><creatorcontrib>Drob, S. I.</creatorcontrib><creatorcontrib>Cimpean, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordin, D. M.</au><au>Gloriant, T.</au><au>Chane-Pane, V.</au><au>Busardo, D.</au><au>Mitran, V.</au><au>Höche, D.</au><au>Vasilescu, C.</au><au>Drob, S. I.</au><au>Cimpean, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface characterization and biocompatibility of titanium alloys implanted with nitrogen by Hardion+ technology</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2012-12</date><risdate>2012</risdate><volume>23</volume><issue>12</issue><spage>2953</spage><epage>2966</epage><pages>2953-2966</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>In this study, the new Hardion+ micro-implanter technology was used to modify surface properties of biomedical pure titanium (CP-Ti) and Ti–6Al–4V ELI alloy by implantation of nitrogen ions. This process is based on the use of an electron cyclotron resonance ion source to produce a multienergetic ion beam from multicharged ions. After implantation, surface analysis methods revealed the formation of titanium nitride (TiN) on the substrate surfaces. An increase in superficial hardness and a significant reduction of friction coefficient were observed for both materials when compared to non-implanted samples. Better corrosion resistance and a significant decrease in ion release rates were observed for N-implanted biomaterials due to the formation of the protective TiN layer on their surfaces. In vitro tests performed on human fetal osteoblasts indicated that the cytocompatibility of N-implanted CP-Ti and Ti–6Al–4V alloy was enhanced in comparison to that of the corresponding non treated samples. Consequently, Hardion+ implantation technique can provide titanium alloys with better qualities in terms of corrosion resistance, cell proliferation, adhesion and viability.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>22918550</pmid><doi>10.1007/s10856-012-4750-z</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2012-12, Vol.23 (12), p.2953-2966 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00919349v1 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Alloys - chemistry Biocompatibility Biocompatible Materials - chemistry Biological and medical sciences Biomaterials Biomedical engineering Biomedical Engineering and Bioengineering Biomedical materials Cell Adhesion Cell Proliferation Cell Survival Ceramics Chemical Sciences Chemistry and Materials Science Composites Corrosion Corrosion resistance Extracellular Matrix - metabolism Fibronectins - chemistry Friction Glass Humans Ion implantation Ions Mass Spectrometry - methods Material chemistry Materials Science Materials Testing Medical sciences Natural Materials Nitrogen Nitrogen - chemistry Nitrogen - metabolism Osteoblasts - cytology Polymer Sciences Prostheses and Implants Regenerative Medicine/Tissue Engineering Surface Properties Surfaces and Interfaces Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgical implants Technology. Biomaterials. Equipments Temperature Thin Films Titanium - chemistry Titanium alloys Titanium base alloys Titanium nitride |
title | Surface characterization and biocompatibility of titanium alloys implanted with nitrogen by Hardion+ technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20characterization%20and%20biocompatibility%20of%20titanium%20alloys%20implanted%20with%20nitrogen%20by%20Hardion+%20technology&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Gordin,%20D.%20M.&rft.date=2012-12&rft.volume=23&rft.issue=12&rft.spage=2953&rft.epage=2966&rft.pages=2953-2966&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-012-4750-z&rft_dat=%3Cproquest_hal_p%3E1257763737%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1197748502&rft_id=info:pmid/22918550&rfr_iscdi=true |