Nitrogen–phosphorus competition in the molecular beam epitaxy of GaPN

In this work, we study the nitrogen–phosphorus competition during the molecular beam epitaxial growth of GaPN alloy with N content ranging from 0 to 6%. N2 decomposition in the valved RF plasma cell is first optimized through the spectroscopic analysis of the plasma luminescence. Strain relaxation p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2013-08, Vol.377, p.17-21
Hauptverfasser: Kuyyalil, J., Nguyen Thanh, T., Quinci, T., Almosni, S., Létoublon, A., Rohel, T., Bertru, N., Le Corre, A., Durand, O., Cornet, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue
container_start_page 17
container_title Journal of crystal growth
container_volume 377
creator Kuyyalil, J.
Nguyen Thanh, T.
Quinci, T.
Almosni, S.
Létoublon, A.
Rohel, T.
Bertru, N.
Le Corre, A.
Durand, O.
Cornet, C.
description In this work, we study the nitrogen–phosphorus competition during the molecular beam epitaxial growth of GaPN alloy with N content ranging from 0 to 6%. N2 decomposition in the valved RF plasma cell is first optimized through the spectroscopic analysis of the plasma luminescence. Strain relaxation process and determination of N content in GaPN layers are then clarified using a reciprocal space mapping around the (224) Bragg reflection. Influence of growth temperature and phosphorus beam equivalent pressure (BEP) on the nitrogen incorporation is finally studied. It is demonstrated that nitrogen incorporation is mainly governed by temperature and phosphorus BEP, through the nitrogen–phosphorus competition. A good control of the nitrogen content is achieved when the temperature is low enough to avoid irreproducibility due to N or N2 desorption, and the phosphorus BEP high enough to limit the effects of nitrogen–phosphorus competition. Finally, a good accuracy on the nitrogen content control is achieved for a wide range of nitrogen composition, using effects of growth rate and valve opening. •Nitrogen–phosphorus competition during the molecular beam epitaxy of GaPN.•Accurate control of the N content in GaPN with low temperature and high P BEP.•Fine tuning of the N content in the GaPN alloy using growth rate and valve opening.
doi_str_mv 10.1016/j.jcrysgro.2013.04.052
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00918658v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024813003205</els_id><sourcerecordid>1464546607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-d2f894f72dd6d1f2650b7d99bf1a6f20b99573deba96ed07d8de2896d17cac2b3</originalsourceid><addsrcrecordid>eNqFkMFO3DAQhi1EJRbKK6BckOCQMPYmTnwrQnRBWtEeytly7DHrVRKndhaxt74Db8iT4NUC1x5mRhp9_4z0EXJGoaBA-dW6WOuwjU_BFwzovICygIodkBlt6nleAbBDMkud5cDK5ogcx7gGSEkKM7J4cFPwTzi8_XsdVz6mCpuYad-POLnJ-SFzQzatMOt9h3rTqZC1qPoMRzepl23mbbZQvx--k29WdRFPP-YJefx5--fmLl_-WtzfXC9zXYKYcsNsI0pbM2O4oZbxCtraCNFaqrhl0ApR1XODrRIcDdSmMcgakdhaK83a-Qm53N9dqU6OwfUqbKVXTt5dL-VuByBow6vmmSb2Ys-Owf_dYJxk76LGrlMD-k2UtORlVXIOdUL5HtXBxxjQft2mIHeW5Vp-WpY7yxJKmSyn4PnHDxW16mxQg3bxK83qxHAmEvdjz2GS8-wwyKgdDhqNC6gnabz736t3PCaXcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464546607</pqid></control><display><type>article</type><title>Nitrogen–phosphorus competition in the molecular beam epitaxy of GaPN</title><source>Elsevier ScienceDirect Journals</source><creator>Kuyyalil, J. ; Nguyen Thanh, T. ; Quinci, T. ; Almosni, S. ; Létoublon, A. ; Rohel, T. ; Bertru, N. ; Le Corre, A. ; Durand, O. ; Cornet, C.</creator><creatorcontrib>Kuyyalil, J. ; Nguyen Thanh, T. ; Quinci, T. ; Almosni, S. ; Létoublon, A. ; Rohel, T. ; Bertru, N. ; Le Corre, A. ; Durand, O. ; Cornet, C.</creatorcontrib><description>In this work, we study the nitrogen–phosphorus competition during the molecular beam epitaxial growth of GaPN alloy with N content ranging from 0 to 6%. N2 decomposition in the valved RF plasma cell is first optimized through the spectroscopic analysis of the plasma luminescence. Strain relaxation process and determination of N content in GaPN layers are then clarified using a reciprocal space mapping around the (224) Bragg reflection. Influence of growth temperature and phosphorus beam equivalent pressure (BEP) on the nitrogen incorporation is finally studied. It is demonstrated that nitrogen incorporation is mainly governed by temperature and phosphorus BEP, through the nitrogen–phosphorus competition. A good control of the nitrogen content is achieved when the temperature is low enough to avoid irreproducibility due to N or N2 desorption, and the phosphorus BEP high enough to limit the effects of nitrogen–phosphorus competition. Finally, a good accuracy on the nitrogen content control is achieved for a wide range of nitrogen composition, using effects of growth rate and valve opening. •Nitrogen–phosphorus competition during the molecular beam epitaxy of GaPN.•Accurate control of the N content in GaPN with low temperature and high P BEP.•Fine tuning of the N content in the GaPN alloy using growth rate and valve opening.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2013.04.052</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. X-ray diffraction ; A3. Molecular beam epitaxy ; B1. Nitrides ; B2: Semiconducting III–V materials ; Beams (radiation) ; Competition ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Desorption ; Engineering Sciences ; Exact sciences and technology ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Molecular beam epitaxy ; Molecular, atomic, ion, and chemical beam epitaxy ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of bulk materials and thin films ; Optics ; Phosphorus ; Photonic ; Physics ; Reflection ; Spectroscopic analysis ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Valves</subject><ispartof>Journal of crystal growth, 2013-08, Vol.377, p.17-21</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-d2f894f72dd6d1f2650b7d99bf1a6f20b99573deba96ed07d8de2896d17cac2b3</citedby><cites>FETCH-LOGICAL-c409t-d2f894f72dd6d1f2650b7d99bf1a6f20b99573deba96ed07d8de2896d17cac2b3</cites><orcidid>0000-0002-4956-7767 ; 0000-0002-1363-7401 ; 0000-0001-8249-120X ; 0000-0002-3655-5943 ; 0000-0002-4378-260X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2013.04.052$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27523629$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00918658$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuyyalil, J.</creatorcontrib><creatorcontrib>Nguyen Thanh, T.</creatorcontrib><creatorcontrib>Quinci, T.</creatorcontrib><creatorcontrib>Almosni, S.</creatorcontrib><creatorcontrib>Létoublon, A.</creatorcontrib><creatorcontrib>Rohel, T.</creatorcontrib><creatorcontrib>Bertru, N.</creatorcontrib><creatorcontrib>Le Corre, A.</creatorcontrib><creatorcontrib>Durand, O.</creatorcontrib><creatorcontrib>Cornet, C.</creatorcontrib><title>Nitrogen–phosphorus competition in the molecular beam epitaxy of GaPN</title><title>Journal of crystal growth</title><description>In this work, we study the nitrogen–phosphorus competition during the molecular beam epitaxial growth of GaPN alloy with N content ranging from 0 to 6%. N2 decomposition in the valved RF plasma cell is first optimized through the spectroscopic analysis of the plasma luminescence. Strain relaxation process and determination of N content in GaPN layers are then clarified using a reciprocal space mapping around the (224) Bragg reflection. Influence of growth temperature and phosphorus beam equivalent pressure (BEP) on the nitrogen incorporation is finally studied. It is demonstrated that nitrogen incorporation is mainly governed by temperature and phosphorus BEP, through the nitrogen–phosphorus competition. A good control of the nitrogen content is achieved when the temperature is low enough to avoid irreproducibility due to N or N2 desorption, and the phosphorus BEP high enough to limit the effects of nitrogen–phosphorus competition. Finally, a good accuracy on the nitrogen content control is achieved for a wide range of nitrogen composition, using effects of growth rate and valve opening. •Nitrogen–phosphorus competition during the molecular beam epitaxy of GaPN.•Accurate control of the N content in GaPN with low temperature and high P BEP.•Fine tuning of the N content in the GaPN alloy using growth rate and valve opening.</description><subject>A1. X-ray diffraction</subject><subject>A3. Molecular beam epitaxy</subject><subject>B1. Nitrides</subject><subject>B2: Semiconducting III–V materials</subject><subject>Beams (radiation)</subject><subject>Competition</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Desorption</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Molecular beam epitaxy</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of bulk materials and thin films</subject><subject>Optics</subject><subject>Phosphorus</subject><subject>Photonic</subject><subject>Physics</subject><subject>Reflection</subject><subject>Spectroscopic analysis</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Valves</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3DAQhi1EJRbKK6BckOCQMPYmTnwrQnRBWtEeytly7DHrVRKndhaxt74Db8iT4NUC1x5mRhp9_4z0EXJGoaBA-dW6WOuwjU_BFwzovICygIodkBlt6nleAbBDMkud5cDK5ogcx7gGSEkKM7J4cFPwTzi8_XsdVz6mCpuYad-POLnJ-SFzQzatMOt9h3rTqZC1qPoMRzepl23mbbZQvx--k29WdRFPP-YJefx5--fmLl_-WtzfXC9zXYKYcsNsI0pbM2O4oZbxCtraCNFaqrhl0ApR1XODrRIcDdSmMcgakdhaK83a-Qm53N9dqU6OwfUqbKVXTt5dL-VuByBow6vmmSb2Ys-Owf_dYJxk76LGrlMD-k2UtORlVXIOdUL5HtXBxxjQft2mIHeW5Vp-WpY7yxJKmSyn4PnHDxW16mxQg3bxK83qxHAmEvdjz2GS8-wwyKgdDhqNC6gnabz736t3PCaXcA</recordid><startdate>20130815</startdate><enddate>20130815</enddate><creator>Kuyyalil, J.</creator><creator>Nguyen Thanh, T.</creator><creator>Quinci, T.</creator><creator>Almosni, S.</creator><creator>Létoublon, A.</creator><creator>Rohel, T.</creator><creator>Bertru, N.</creator><creator>Le Corre, A.</creator><creator>Durand, O.</creator><creator>Cornet, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4956-7767</orcidid><orcidid>https://orcid.org/0000-0002-1363-7401</orcidid><orcidid>https://orcid.org/0000-0001-8249-120X</orcidid><orcidid>https://orcid.org/0000-0002-3655-5943</orcidid><orcidid>https://orcid.org/0000-0002-4378-260X</orcidid></search><sort><creationdate>20130815</creationdate><title>Nitrogen–phosphorus competition in the molecular beam epitaxy of GaPN</title><author>Kuyyalil, J. ; Nguyen Thanh, T. ; Quinci, T. ; Almosni, S. ; Létoublon, A. ; Rohel, T. ; Bertru, N. ; Le Corre, A. ; Durand, O. ; Cornet, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-d2f894f72dd6d1f2650b7d99bf1a6f20b99573deba96ed07d8de2896d17cac2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>A1. X-ray diffraction</topic><topic>A3. Molecular beam epitaxy</topic><topic>B1. Nitrides</topic><topic>B2: Semiconducting III–V materials</topic><topic>Beams (radiation)</topic><topic>Competition</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Desorption</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Molecular beam epitaxy</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of bulk materials and thin films</topic><topic>Optics</topic><topic>Phosphorus</topic><topic>Photonic</topic><topic>Physics</topic><topic>Reflection</topic><topic>Spectroscopic analysis</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuyyalil, J.</creatorcontrib><creatorcontrib>Nguyen Thanh, T.</creatorcontrib><creatorcontrib>Quinci, T.</creatorcontrib><creatorcontrib>Almosni, S.</creatorcontrib><creatorcontrib>Létoublon, A.</creatorcontrib><creatorcontrib>Rohel, T.</creatorcontrib><creatorcontrib>Bertru, N.</creatorcontrib><creatorcontrib>Le Corre, A.</creatorcontrib><creatorcontrib>Durand, O.</creatorcontrib><creatorcontrib>Cornet, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuyyalil, J.</au><au>Nguyen Thanh, T.</au><au>Quinci, T.</au><au>Almosni, S.</au><au>Létoublon, A.</au><au>Rohel, T.</au><au>Bertru, N.</au><au>Le Corre, A.</au><au>Durand, O.</au><au>Cornet, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen–phosphorus competition in the molecular beam epitaxy of GaPN</atitle><jtitle>Journal of crystal growth</jtitle><date>2013-08-15</date><risdate>2013</risdate><volume>377</volume><spage>17</spage><epage>21</epage><pages>17-21</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>In this work, we study the nitrogen–phosphorus competition during the molecular beam epitaxial growth of GaPN alloy with N content ranging from 0 to 6%. N2 decomposition in the valved RF plasma cell is first optimized through the spectroscopic analysis of the plasma luminescence. Strain relaxation process and determination of N content in GaPN layers are then clarified using a reciprocal space mapping around the (224) Bragg reflection. Influence of growth temperature and phosphorus beam equivalent pressure (BEP) on the nitrogen incorporation is finally studied. It is demonstrated that nitrogen incorporation is mainly governed by temperature and phosphorus BEP, through the nitrogen–phosphorus competition. A good control of the nitrogen content is achieved when the temperature is low enough to avoid irreproducibility due to N or N2 desorption, and the phosphorus BEP high enough to limit the effects of nitrogen–phosphorus competition. Finally, a good accuracy on the nitrogen content control is achieved for a wide range of nitrogen composition, using effects of growth rate and valve opening. •Nitrogen–phosphorus competition during the molecular beam epitaxy of GaPN.•Accurate control of the N content in GaPN with low temperature and high P BEP.•Fine tuning of the N content in the GaPN alloy using growth rate and valve opening.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2013.04.052</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4956-7767</orcidid><orcidid>https://orcid.org/0000-0002-1363-7401</orcidid><orcidid>https://orcid.org/0000-0001-8249-120X</orcidid><orcidid>https://orcid.org/0000-0002-3655-5943</orcidid><orcidid>https://orcid.org/0000-0002-4378-260X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2013-08, Vol.377, p.17-21
issn 0022-0248
1873-5002
language eng
recordid cdi_hal_primary_oai_HAL_hal_00918658v1
source Elsevier ScienceDirect Journals
subjects A1. X-ray diffraction
A3. Molecular beam epitaxy
B1. Nitrides
B2: Semiconducting III–V materials
Beams (radiation)
Competition
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Desorption
Engineering Sciences
Exact sciences and technology
Materials science
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Molecular beam epitaxy
Molecular, atomic, ion, and chemical beam epitaxy
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of bulk materials and thin films
Optics
Phosphorus
Photonic
Physics
Reflection
Spectroscopic analysis
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
Valves
title Nitrogen–phosphorus competition in the molecular beam epitaxy of GaPN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%E2%80%93phosphorus%20competition%20in%20the%20molecular%20beam%20epitaxy%20of%20GaPN&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Kuyyalil,%20J.&rft.date=2013-08-15&rft.volume=377&rft.spage=17&rft.epage=21&rft.pages=17-21&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2013.04.052&rft_dat=%3Cproquest_hal_p%3E1464546607%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464546607&rft_id=info:pmid/&rft_els_id=S0022024813003205&rfr_iscdi=true