Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport

Two different organic monolayers were prepared on silicon Si(111) and modified for attaching gold nanoparticles. The molecules are covalently bound to silicon and form very ordered monolayers sometimes improperly called self-assembled monolayers (SAM). They are designed to be electrically insulating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2013-04, Vol.29 (16), p.5066-5073
Hauptverfasser: Caillard, Louis, Seitz, Oliver, Campbell, Philip M, Doherty, Rachel P, Lamic-Humblot, Anne-Félicie, Lacaze, Emmanuelle, Chabal, Yves J, Pluchery, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5073
container_issue 16
container_start_page 5066
container_title Langmuir
container_volume 29
creator Caillard, Louis
Seitz, Oliver
Campbell, Philip M
Doherty, Rachel P
Lamic-Humblot, Anne-Félicie
Lacaze, Emmanuelle
Chabal, Yves J
Pluchery, Olivier
description Two different organic monolayers were prepared on silicon Si(111) and modified for attaching gold nanoparticles. The molecules are covalently bound to silicon and form very ordered monolayers sometimes improperly called self-assembled monolayers (SAM). They are designed to be electrically insulating and to have very few electrical interface states. By positioning the tip of an STM above a nanoparticle, a double barrier tunnel junction (DBTJ) is created, and Coulomb blockade is demonstrated at 40 K. This is the first time Coulomb blockade is observed with an organic monolayer on oxide-free silicon. This work focuses on the fabrication and initial electrical characterization of this double barrier tunnel junction. The organic layers were prepared by thermal hydrosilylation of two different alkene molecules with either a long carbon chain (C11) or a shorter one (C7), and both were modified to be amine-terminated. FTIR and XPS measurements confirm that the Si(111) substrate remains unoxidized during the whole chemical process. Colloidal gold nanoparticles were prepared using two methods: either with citrate molecules (Turkevich method) or with ascorbic acid as the surfactant. In both cases AFM and STM images show a well-controlled deposition on the grafted organic monolayer. I–V curves obtained by scanning tunneling spectroscopy (STS) are presented on 8 nm diameter nanoparticles and exhibit the well-known Coulomb staircases at low temperature. The curves are discussed as a function of the organic layer thickness and silicon substrate doping.
doi_str_mv 10.1021/la304971v
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00910966v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1346117588</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-428f015352280f833ef3992a618b0fbfd43babd2fe9f0c05e983ed442b29d2f43</originalsourceid><addsrcrecordid>eNptkMtKxDAUhoMoOl4WvoB0I-iimlvbZCmDNxh1oa5chDQ90UqmGZNWdOc7-IY-iRHHmY0QOPCfL3_Ih9AuwUcEU3LsNMNcVuR1BY1IQXFeCFqtohGuOMsrXrINtBnjM8ZYMi7X0QZlXIiKihF6OPeuya5152c69K1xEDPfZTdvbQP5WQDIblvXGt99fXxeeQdmcJBddj0Eqw1k1ocEdI8pPE3LPqS7d0F3ceZDv43WrHYRduZzC92fnd6NL_LJzfnl-GSSa054n3MqLCYFKygV2ArGwDIpqS6JqLGtbcNZreuGWpAWG1yAFAwazmlNZUo520KHv71P2qlZaKc6vCuvW3VxMlE_Wfo3wbIsX0liD37ZWfAvA8ReTdtowDndgR-iIoyXhFSFEMtaE3yMAeyim2D1410tvCd2b1471FNoFuSf6ATszwEdjXY2OTJtXHIVw-mQJadNVM9-CF0y98-D3wm8ljM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346117588</pqid></control><display><type>article</type><title>Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport</title><source>ACS Publications</source><creator>Caillard, Louis ; Seitz, Oliver ; Campbell, Philip M ; Doherty, Rachel P ; Lamic-Humblot, Anne-Félicie ; Lacaze, Emmanuelle ; Chabal, Yves J ; Pluchery, Olivier</creator><creatorcontrib>Caillard, Louis ; Seitz, Oliver ; Campbell, Philip M ; Doherty, Rachel P ; Lamic-Humblot, Anne-Félicie ; Lacaze, Emmanuelle ; Chabal, Yves J ; Pluchery, Olivier</creatorcontrib><description>Two different organic monolayers were prepared on silicon Si(111) and modified for attaching gold nanoparticles. The molecules are covalently bound to silicon and form very ordered monolayers sometimes improperly called self-assembled monolayers (SAM). They are designed to be electrically insulating and to have very few electrical interface states. By positioning the tip of an STM above a nanoparticle, a double barrier tunnel junction (DBTJ) is created, and Coulomb blockade is demonstrated at 40 K. This is the first time Coulomb blockade is observed with an organic monolayer on oxide-free silicon. This work focuses on the fabrication and initial electrical characterization of this double barrier tunnel junction. The organic layers were prepared by thermal hydrosilylation of two different alkene molecules with either a long carbon chain (C11) or a shorter one (C7), and both were modified to be amine-terminated. FTIR and XPS measurements confirm that the Si(111) substrate remains unoxidized during the whole chemical process. Colloidal gold nanoparticles were prepared using two methods: either with citrate molecules (Turkevich method) or with ascorbic acid as the surfactant. In both cases AFM and STM images show a well-controlled deposition on the grafted organic monolayer. I–V curves obtained by scanning tunneling spectroscopy (STS) are presented on 8 nm diameter nanoparticles and exhibit the well-known Coulomb staircases at low temperature. The curves are discussed as a function of the organic layer thickness and silicon substrate doping.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la304971v</identifier><identifier>PMID: 23488728</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Catalysis ; Chemical Sciences ; Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Surface physical chemistry</subject><ispartof>Langmuir, 2013-04, Vol.29 (16), p.5066-5073</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-428f015352280f833ef3992a618b0fbfd43babd2fe9f0c05e983ed442b29d2f43</citedby><cites>FETCH-LOGICAL-a414t-428f015352280f833ef3992a618b0fbfd43babd2fe9f0c05e983ed442b29d2f43</cites><orcidid>0000-0003-2333-2967 ; 0000-0002-8380-8288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la304971v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la304971v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27307301$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23488728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-00910966$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Caillard, Louis</creatorcontrib><creatorcontrib>Seitz, Oliver</creatorcontrib><creatorcontrib>Campbell, Philip M</creatorcontrib><creatorcontrib>Doherty, Rachel P</creatorcontrib><creatorcontrib>Lamic-Humblot, Anne-Félicie</creatorcontrib><creatorcontrib>Lacaze, Emmanuelle</creatorcontrib><creatorcontrib>Chabal, Yves J</creatorcontrib><creatorcontrib>Pluchery, Olivier</creatorcontrib><title>Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Two different organic monolayers were prepared on silicon Si(111) and modified for attaching gold nanoparticles. The molecules are covalently bound to silicon and form very ordered monolayers sometimes improperly called self-assembled monolayers (SAM). They are designed to be electrically insulating and to have very few electrical interface states. By positioning the tip of an STM above a nanoparticle, a double barrier tunnel junction (DBTJ) is created, and Coulomb blockade is demonstrated at 40 K. This is the first time Coulomb blockade is observed with an organic monolayer on oxide-free silicon. This work focuses on the fabrication and initial electrical characterization of this double barrier tunnel junction. The organic layers were prepared by thermal hydrosilylation of two different alkene molecules with either a long carbon chain (C11) or a shorter one (C7), and both were modified to be amine-terminated. FTIR and XPS measurements confirm that the Si(111) substrate remains unoxidized during the whole chemical process. Colloidal gold nanoparticles were prepared using two methods: either with citrate molecules (Turkevich method) or with ascorbic acid as the surfactant. In both cases AFM and STM images show a well-controlled deposition on the grafted organic monolayer. I–V curves obtained by scanning tunneling spectroscopy (STS) are presented on 8 nm diameter nanoparticles and exhibit the well-known Coulomb staircases at low temperature. The curves are discussed as a function of the organic layer thickness and silicon substrate doping.</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkMtKxDAUhoMoOl4WvoB0I-iimlvbZCmDNxh1oa5chDQ90UqmGZNWdOc7-IY-iRHHmY0QOPCfL3_Ih9AuwUcEU3LsNMNcVuR1BY1IQXFeCFqtohGuOMsrXrINtBnjM8ZYMi7X0QZlXIiKihF6OPeuya5152c69K1xEDPfZTdvbQP5WQDIblvXGt99fXxeeQdmcJBddj0Eqw1k1ocEdI8pPE3LPqS7d0F3ceZDv43WrHYRduZzC92fnd6NL_LJzfnl-GSSa054n3MqLCYFKygV2ArGwDIpqS6JqLGtbcNZreuGWpAWG1yAFAwazmlNZUo520KHv71P2qlZaKc6vCuvW3VxMlE_Wfo3wbIsX0liD37ZWfAvA8ReTdtowDndgR-iIoyXhFSFEMtaE3yMAeyim2D1410tvCd2b1471FNoFuSf6ATszwEdjXY2OTJtXHIVw-mQJadNVM9-CF0y98-D3wm8ljM</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Caillard, Louis</creator><creator>Seitz, Oliver</creator><creator>Campbell, Philip M</creator><creator>Doherty, Rachel P</creator><creator>Lamic-Humblot, Anne-Félicie</creator><creator>Lacaze, Emmanuelle</creator><creator>Chabal, Yves J</creator><creator>Pluchery, Olivier</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2333-2967</orcidid><orcidid>https://orcid.org/0000-0002-8380-8288</orcidid></search><sort><creationdate>20130423</creationdate><title>Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport</title><author>Caillard, Louis ; Seitz, Oliver ; Campbell, Philip M ; Doherty, Rachel P ; Lamic-Humblot, Anne-Félicie ; Lacaze, Emmanuelle ; Chabal, Yves J ; Pluchery, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-428f015352280f833ef3992a618b0fbfd43babd2fe9f0c05e983ed442b29d2f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caillard, Louis</creatorcontrib><creatorcontrib>Seitz, Oliver</creatorcontrib><creatorcontrib>Campbell, Philip M</creatorcontrib><creatorcontrib>Doherty, Rachel P</creatorcontrib><creatorcontrib>Lamic-Humblot, Anne-Félicie</creatorcontrib><creatorcontrib>Lacaze, Emmanuelle</creatorcontrib><creatorcontrib>Chabal, Yves J</creatorcontrib><creatorcontrib>Pluchery, Olivier</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caillard, Louis</au><au>Seitz, Oliver</au><au>Campbell, Philip M</au><au>Doherty, Rachel P</au><au>Lamic-Humblot, Anne-Félicie</au><au>Lacaze, Emmanuelle</au><au>Chabal, Yves J</au><au>Pluchery, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>29</volume><issue>16</issue><spage>5066</spage><epage>5073</epage><pages>5066-5073</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Two different organic monolayers were prepared on silicon Si(111) and modified for attaching gold nanoparticles. The molecules are covalently bound to silicon and form very ordered monolayers sometimes improperly called self-assembled monolayers (SAM). They are designed to be electrically insulating and to have very few electrical interface states. By positioning the tip of an STM above a nanoparticle, a double barrier tunnel junction (DBTJ) is created, and Coulomb blockade is demonstrated at 40 K. This is the first time Coulomb blockade is observed with an organic monolayer on oxide-free silicon. This work focuses on the fabrication and initial electrical characterization of this double barrier tunnel junction. The organic layers were prepared by thermal hydrosilylation of two different alkene molecules with either a long carbon chain (C11) or a shorter one (C7), and both were modified to be amine-terminated. FTIR and XPS measurements confirm that the Si(111) substrate remains unoxidized during the whole chemical process. Colloidal gold nanoparticles were prepared using two methods: either with citrate molecules (Turkevich method) or with ascorbic acid as the surfactant. In both cases AFM and STM images show a well-controlled deposition on the grafted organic monolayer. I–V curves obtained by scanning tunneling spectroscopy (STS) are presented on 8 nm diameter nanoparticles and exhibit the well-known Coulomb staircases at low temperature. The curves are discussed as a function of the organic layer thickness and silicon substrate doping.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23488728</pmid><doi>10.1021/la304971v</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2333-2967</orcidid><orcidid>https://orcid.org/0000-0002-8380-8288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2013-04, Vol.29 (16), p.5066-5073
issn 0743-7463
1520-5827
language eng
recordid cdi_hal_primary_oai_HAL_hal_00910966v1
source ACS Publications
subjects Catalysis
Chemical Sciences
Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Surface physical chemistry
title Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold%20Nanoparticles%20on%20Oxide-Free%20Silicon%E2%80%93Molecule%20Interface%20for%20Single%20Electron%20Transport&rft.jtitle=Langmuir&rft.au=Caillard,%20Louis&rft.date=2013-04-23&rft.volume=29&rft.issue=16&rft.spage=5066&rft.epage=5073&rft.pages=5066-5073&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la304971v&rft_dat=%3Cproquest_hal_p%3E1346117588%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346117588&rft_id=info:pmid/23488728&rfr_iscdi=true