Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport
Two different organic monolayers were prepared on silicon Si(111) and modified for attaching gold nanoparticles. The molecules are covalently bound to silicon and form very ordered monolayers sometimes improperly called self-assembled monolayers (SAM). They are designed to be electrically insulating...
Gespeichert in:
Veröffentlicht in: | Langmuir 2013-04, Vol.29 (16), p.5066-5073 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5073 |
---|---|
container_issue | 16 |
container_start_page | 5066 |
container_title | Langmuir |
container_volume | 29 |
creator | Caillard, Louis Seitz, Oliver Campbell, Philip M Doherty, Rachel P Lamic-Humblot, Anne-Félicie Lacaze, Emmanuelle Chabal, Yves J Pluchery, Olivier |
description | Two different organic monolayers were prepared on silicon Si(111) and modified for attaching gold nanoparticles. The molecules are covalently bound to silicon and form very ordered monolayers sometimes improperly called self-assembled monolayers (SAM). They are designed to be electrically insulating and to have very few electrical interface states. By positioning the tip of an STM above a nanoparticle, a double barrier tunnel junction (DBTJ) is created, and Coulomb blockade is demonstrated at 40 K. This is the first time Coulomb blockade is observed with an organic monolayer on oxide-free silicon. This work focuses on the fabrication and initial electrical characterization of this double barrier tunnel junction. The organic layers were prepared by thermal hydrosilylation of two different alkene molecules with either a long carbon chain (C11) or a shorter one (C7), and both were modified to be amine-terminated. FTIR and XPS measurements confirm that the Si(111) substrate remains unoxidized during the whole chemical process. Colloidal gold nanoparticles were prepared using two methods: either with citrate molecules (Turkevich method) or with ascorbic acid as the surfactant. In both cases AFM and STM images show a well-controlled deposition on the grafted organic monolayer. I–V curves obtained by scanning tunneling spectroscopy (STS) are presented on 8 nm diameter nanoparticles and exhibit the well-known Coulomb staircases at low temperature. The curves are discussed as a function of the organic layer thickness and silicon substrate doping. |
doi_str_mv | 10.1021/la304971v |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00910966v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1346117588</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-428f015352280f833ef3992a618b0fbfd43babd2fe9f0c05e983ed442b29d2f43</originalsourceid><addsrcrecordid>eNptkMtKxDAUhoMoOl4WvoB0I-iimlvbZCmDNxh1oa5chDQ90UqmGZNWdOc7-IY-iRHHmY0QOPCfL3_Ih9AuwUcEU3LsNMNcVuR1BY1IQXFeCFqtohGuOMsrXrINtBnjM8ZYMi7X0QZlXIiKihF6OPeuya5152c69K1xEDPfZTdvbQP5WQDIblvXGt99fXxeeQdmcJBddj0Eqw1k1ocEdI8pPE3LPqS7d0F3ceZDv43WrHYRduZzC92fnd6NL_LJzfnl-GSSa054n3MqLCYFKygV2ArGwDIpqS6JqLGtbcNZreuGWpAWG1yAFAwazmlNZUo520KHv71P2qlZaKc6vCuvW3VxMlE_Wfo3wbIsX0liD37ZWfAvA8ReTdtowDndgR-iIoyXhFSFEMtaE3yMAeyim2D1410tvCd2b1471FNoFuSf6ATszwEdjXY2OTJtXHIVw-mQJadNVM9-CF0y98-D3wm8ljM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346117588</pqid></control><display><type>article</type><title>Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport</title><source>ACS Publications</source><creator>Caillard, Louis ; Seitz, Oliver ; Campbell, Philip M ; Doherty, Rachel P ; Lamic-Humblot, Anne-Félicie ; Lacaze, Emmanuelle ; Chabal, Yves J ; Pluchery, Olivier</creator><creatorcontrib>Caillard, Louis ; Seitz, Oliver ; Campbell, Philip M ; Doherty, Rachel P ; Lamic-Humblot, Anne-Félicie ; Lacaze, Emmanuelle ; Chabal, Yves J ; Pluchery, Olivier</creatorcontrib><description>Two different organic monolayers were prepared on silicon Si(111) and modified for attaching gold nanoparticles. The molecules are covalently bound to silicon and form very ordered monolayers sometimes improperly called self-assembled monolayers (SAM). They are designed to be electrically insulating and to have very few electrical interface states. By positioning the tip of an STM above a nanoparticle, a double barrier tunnel junction (DBTJ) is created, and Coulomb blockade is demonstrated at 40 K. This is the first time Coulomb blockade is observed with an organic monolayer on oxide-free silicon. This work focuses on the fabrication and initial electrical characterization of this double barrier tunnel junction. The organic layers were prepared by thermal hydrosilylation of two different alkene molecules with either a long carbon chain (C11) or a shorter one (C7), and both were modified to be amine-terminated. FTIR and XPS measurements confirm that the Si(111) substrate remains unoxidized during the whole chemical process. Colloidal gold nanoparticles were prepared using two methods: either with citrate molecules (Turkevich method) or with ascorbic acid as the surfactant. In both cases AFM and STM images show a well-controlled deposition on the grafted organic monolayer. I–V curves obtained by scanning tunneling spectroscopy (STS) are presented on 8 nm diameter nanoparticles and exhibit the well-known Coulomb staircases at low temperature. The curves are discussed as a function of the organic layer thickness and silicon substrate doping.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la304971v</identifier><identifier>PMID: 23488728</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Catalysis ; Chemical Sciences ; Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Surface physical chemistry</subject><ispartof>Langmuir, 2013-04, Vol.29 (16), p.5066-5073</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-428f015352280f833ef3992a618b0fbfd43babd2fe9f0c05e983ed442b29d2f43</citedby><cites>FETCH-LOGICAL-a414t-428f015352280f833ef3992a618b0fbfd43babd2fe9f0c05e983ed442b29d2f43</cites><orcidid>0000-0003-2333-2967 ; 0000-0002-8380-8288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la304971v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la304971v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27307301$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23488728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-00910966$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Caillard, Louis</creatorcontrib><creatorcontrib>Seitz, Oliver</creatorcontrib><creatorcontrib>Campbell, Philip M</creatorcontrib><creatorcontrib>Doherty, Rachel P</creatorcontrib><creatorcontrib>Lamic-Humblot, Anne-Félicie</creatorcontrib><creatorcontrib>Lacaze, Emmanuelle</creatorcontrib><creatorcontrib>Chabal, Yves J</creatorcontrib><creatorcontrib>Pluchery, Olivier</creatorcontrib><title>Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Two different organic monolayers were prepared on silicon Si(111) and modified for attaching gold nanoparticles. The molecules are covalently bound to silicon and form very ordered monolayers sometimes improperly called self-assembled monolayers (SAM). They are designed to be electrically insulating and to have very few electrical interface states. By positioning the tip of an STM above a nanoparticle, a double barrier tunnel junction (DBTJ) is created, and Coulomb blockade is demonstrated at 40 K. This is the first time Coulomb blockade is observed with an organic monolayer on oxide-free silicon. This work focuses on the fabrication and initial electrical characterization of this double barrier tunnel junction. The organic layers were prepared by thermal hydrosilylation of two different alkene molecules with either a long carbon chain (C11) or a shorter one (C7), and both were modified to be amine-terminated. FTIR and XPS measurements confirm that the Si(111) substrate remains unoxidized during the whole chemical process. Colloidal gold nanoparticles were prepared using two methods: either with citrate molecules (Turkevich method) or with ascorbic acid as the surfactant. In both cases AFM and STM images show a well-controlled deposition on the grafted organic monolayer. I–V curves obtained by scanning tunneling spectroscopy (STS) are presented on 8 nm diameter nanoparticles and exhibit the well-known Coulomb staircases at low temperature. The curves are discussed as a function of the organic layer thickness and silicon substrate doping.</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkMtKxDAUhoMoOl4WvoB0I-iimlvbZCmDNxh1oa5chDQ90UqmGZNWdOc7-IY-iRHHmY0QOPCfL3_Ih9AuwUcEU3LsNMNcVuR1BY1IQXFeCFqtohGuOMsrXrINtBnjM8ZYMi7X0QZlXIiKihF6OPeuya5152c69K1xEDPfZTdvbQP5WQDIblvXGt99fXxeeQdmcJBddj0Eqw1k1ocEdI8pPE3LPqS7d0F3ceZDv43WrHYRduZzC92fnd6NL_LJzfnl-GSSa054n3MqLCYFKygV2ArGwDIpqS6JqLGtbcNZreuGWpAWG1yAFAwazmlNZUo520KHv71P2qlZaKc6vCuvW3VxMlE_Wfo3wbIsX0liD37ZWfAvA8ReTdtowDndgR-iIoyXhFSFEMtaE3yMAeyim2D1410tvCd2b1471FNoFuSf6ATszwEdjXY2OTJtXHIVw-mQJadNVM9-CF0y98-D3wm8ljM</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Caillard, Louis</creator><creator>Seitz, Oliver</creator><creator>Campbell, Philip M</creator><creator>Doherty, Rachel P</creator><creator>Lamic-Humblot, Anne-Félicie</creator><creator>Lacaze, Emmanuelle</creator><creator>Chabal, Yves J</creator><creator>Pluchery, Olivier</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2333-2967</orcidid><orcidid>https://orcid.org/0000-0002-8380-8288</orcidid></search><sort><creationdate>20130423</creationdate><title>Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport</title><author>Caillard, Louis ; Seitz, Oliver ; Campbell, Philip M ; Doherty, Rachel P ; Lamic-Humblot, Anne-Félicie ; Lacaze, Emmanuelle ; Chabal, Yves J ; Pluchery, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-428f015352280f833ef3992a618b0fbfd43babd2fe9f0c05e983ed442b29d2f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caillard, Louis</creatorcontrib><creatorcontrib>Seitz, Oliver</creatorcontrib><creatorcontrib>Campbell, Philip M</creatorcontrib><creatorcontrib>Doherty, Rachel P</creatorcontrib><creatorcontrib>Lamic-Humblot, Anne-Félicie</creatorcontrib><creatorcontrib>Lacaze, Emmanuelle</creatorcontrib><creatorcontrib>Chabal, Yves J</creatorcontrib><creatorcontrib>Pluchery, Olivier</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caillard, Louis</au><au>Seitz, Oliver</au><au>Campbell, Philip M</au><au>Doherty, Rachel P</au><au>Lamic-Humblot, Anne-Félicie</au><au>Lacaze, Emmanuelle</au><au>Chabal, Yves J</au><au>Pluchery, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>29</volume><issue>16</issue><spage>5066</spage><epage>5073</epage><pages>5066-5073</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Two different organic monolayers were prepared on silicon Si(111) and modified for attaching gold nanoparticles. The molecules are covalently bound to silicon and form very ordered monolayers sometimes improperly called self-assembled monolayers (SAM). They are designed to be electrically insulating and to have very few electrical interface states. By positioning the tip of an STM above a nanoparticle, a double barrier tunnel junction (DBTJ) is created, and Coulomb blockade is demonstrated at 40 K. This is the first time Coulomb blockade is observed with an organic monolayer on oxide-free silicon. This work focuses on the fabrication and initial electrical characterization of this double barrier tunnel junction. The organic layers were prepared by thermal hydrosilylation of two different alkene molecules with either a long carbon chain (C11) or a shorter one (C7), and both were modified to be amine-terminated. FTIR and XPS measurements confirm that the Si(111) substrate remains unoxidized during the whole chemical process. Colloidal gold nanoparticles were prepared using two methods: either with citrate molecules (Turkevich method) or with ascorbic acid as the surfactant. In both cases AFM and STM images show a well-controlled deposition on the grafted organic monolayer. I–V curves obtained by scanning tunneling spectroscopy (STS) are presented on 8 nm diameter nanoparticles and exhibit the well-known Coulomb staircases at low temperature. The curves are discussed as a function of the organic layer thickness and silicon substrate doping.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23488728</pmid><doi>10.1021/la304971v</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2333-2967</orcidid><orcidid>https://orcid.org/0000-0002-8380-8288</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2013-04, Vol.29 (16), p.5066-5073 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00910966v1 |
source | ACS Publications |
subjects | Catalysis Chemical Sciences Chemistry Colloidal state and disperse state Exact sciences and technology General and physical chemistry Physical and chemical studies. Granulometry. Electrokinetic phenomena Surface physical chemistry |
title | Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold%20Nanoparticles%20on%20Oxide-Free%20Silicon%E2%80%93Molecule%20Interface%20for%20Single%20Electron%20Transport&rft.jtitle=Langmuir&rft.au=Caillard,%20Louis&rft.date=2013-04-23&rft.volume=29&rft.issue=16&rft.spage=5066&rft.epage=5073&rft.pages=5066-5073&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la304971v&rft_dat=%3Cproquest_hal_p%3E1346117588%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346117588&rft_id=info:pmid/23488728&rfr_iscdi=true |