Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations

Microorganisms, such as bacteria, algae, or spermatozoa, are able to propel themselves forward thanks to flagella or cilia activity. By contrast, other organisms employ pronounced changes of the membrane shape to achieve propulsion, a prototypical example being the Eutreptiella gymnastica. Cells of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2013-11, Vol.111 (22), p.228102-228102, Article 228102
Hauptverfasser: Farutin, Alexander, Rafaï, Salima, Dysthe, Dag Kristian, Duperray, Alain, Peyla, Philippe, Misbah, Chaouqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228102
container_issue 22
container_start_page 228102
container_title Physical review letters
container_volume 111
creator Farutin, Alexander
Rafaï, Salima
Dysthe, Dag Kristian
Duperray, Alain
Peyla, Philippe
Misbah, Chaouqi
description Microorganisms, such as bacteria, algae, or spermatozoa, are able to propel themselves forward thanks to flagella or cilia activity. By contrast, other organisms employ pronounced changes of the membrane shape to achieve propulsion, a prototypical example being the Eutreptiella gymnastica. Cells of the immune system as well as dictyostelium amoebas, traditionally believed to crawl on a substratum, can also swim in a similar way. We develop a model for these organisms: the swimmer is mimicked by a closed incompressible membrane with force density distribution (with zero total force and torque). It is shown that fast propulsion can be achieved with adequate shape adaptations. This swimming is found to consist of an entangled pusher-puller state. The autopropulsion distance over one cycle is a universal linear function of a simple geometrical dimensionless quantity A/V(2/3) (V and A are the cell volume and its membrane area). This study captures the peculiar motion of Eutreptiella gymnastica with simple force distribution.
doi_str_mv 10.1103/PhysRevLett.111.228102
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00908796v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1477558451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-5f64057d1fd976118e5df6e68fb1612f749231153510f8d7769f20776c19d2513</originalsourceid><addsrcrecordid>eNpNUU1P3DAUtKoiWD7-AvKRHgLvOY4dc1shWpBWAlXlbDmxDa7ieBsnoP33TboUcXrSvJl5H0PIOcIlIpRXjy-7_NO9btw4zgBeMlYjsC9khSBVIRH5V7ICKLFQAPKIHOf8GwCQifqQHDFeMsUlWxGzjsk1KVia30KMoX--poY-u94NoaXZdb7YDmk7dTmkniZPW9d1mYae-m4KNtNmR6MzfV560cVmML2j1vk0RDPOmnxKDrzpsjt7ryfk6fvtr5u7YvPw4_5mvSlazsVYVF5wqKRFb5UUiLWrrBdO1L5BgcxLrliJWJUVgq-tlEJ5BnNpUVlWYXlCvu19X0ynt0OIZtjpZIK-W2_0ggEoqKUSrwv3Ys-db_szuTzqGPJy2bx8mrJGLmVV1fyfrdhT2yHlPDj_4Y2glyj0pyhmAPU-ill4_j5jaqKzH7L_vy__Ai0uhmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477558451</pqid></control><display><type>article</type><title>Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Farutin, Alexander ; Rafaï, Salima ; Dysthe, Dag Kristian ; Duperray, Alain ; Peyla, Philippe ; Misbah, Chaouqi</creator><creatorcontrib>Farutin, Alexander ; Rafaï, Salima ; Dysthe, Dag Kristian ; Duperray, Alain ; Peyla, Philippe ; Misbah, Chaouqi</creatorcontrib><description>Microorganisms, such as bacteria, algae, or spermatozoa, are able to propel themselves forward thanks to flagella or cilia activity. By contrast, other organisms employ pronounced changes of the membrane shape to achieve propulsion, a prototypical example being the Eutreptiella gymnastica. Cells of the immune system as well as dictyostelium amoebas, traditionally believed to crawl on a substratum, can also swim in a similar way. We develop a model for these organisms: the swimmer is mimicked by a closed incompressible membrane with force density distribution (with zero total force and torque). It is shown that fast propulsion can be achieved with adequate shape adaptations. This swimming is found to consist of an entangled pusher-puller state. The autopropulsion distance over one cycle is a universal linear function of a simple geometrical dimensionless quantity A/V(2/3) (V and A are the cell volume and its membrane area). This study captures the peculiar motion of Eutreptiella gymnastica with simple force distribution.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.111.228102</identifier><identifier>PMID: 24329472</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Biological Physics ; Cell Surface Extensions - physiology ; Euglenida - physiology ; Models, Biological ; Physics ; Swimming - physiology</subject><ispartof>Physical review letters, 2013-11, Vol.111 (22), p.228102-228102, Article 228102</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-5f64057d1fd976118e5df6e68fb1612f749231153510f8d7769f20776c19d2513</citedby><cites>FETCH-LOGICAL-c446t-5f64057d1fd976118e5df6e68fb1612f749231153510f8d7769f20776c19d2513</cites><orcidid>0000-0001-9889-3035 ; 0000-0002-2719-252X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24329472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00908796$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Farutin, Alexander</creatorcontrib><creatorcontrib>Rafaï, Salima</creatorcontrib><creatorcontrib>Dysthe, Dag Kristian</creatorcontrib><creatorcontrib>Duperray, Alain</creatorcontrib><creatorcontrib>Peyla, Philippe</creatorcontrib><creatorcontrib>Misbah, Chaouqi</creatorcontrib><title>Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Microorganisms, such as bacteria, algae, or spermatozoa, are able to propel themselves forward thanks to flagella or cilia activity. By contrast, other organisms employ pronounced changes of the membrane shape to achieve propulsion, a prototypical example being the Eutreptiella gymnastica. Cells of the immune system as well as dictyostelium amoebas, traditionally believed to crawl on a substratum, can also swim in a similar way. We develop a model for these organisms: the swimmer is mimicked by a closed incompressible membrane with force density distribution (with zero total force and torque). It is shown that fast propulsion can be achieved with adequate shape adaptations. This swimming is found to consist of an entangled pusher-puller state. The autopropulsion distance over one cycle is a universal linear function of a simple geometrical dimensionless quantity A/V(2/3) (V and A are the cell volume and its membrane area). This study captures the peculiar motion of Eutreptiella gymnastica with simple force distribution.</description><subject>Biological Physics</subject><subject>Cell Surface Extensions - physiology</subject><subject>Euglenida - physiology</subject><subject>Models, Biological</subject><subject>Physics</subject><subject>Swimming - physiology</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNUU1P3DAUtKoiWD7-AvKRHgLvOY4dc1shWpBWAlXlbDmxDa7ieBsnoP33TboUcXrSvJl5H0PIOcIlIpRXjy-7_NO9btw4zgBeMlYjsC9khSBVIRH5V7ICKLFQAPKIHOf8GwCQifqQHDFeMsUlWxGzjsk1KVia30KMoX--poY-u94NoaXZdb7YDmk7dTmkniZPW9d1mYae-m4KNtNmR6MzfV560cVmML2j1vk0RDPOmnxKDrzpsjt7ryfk6fvtr5u7YvPw4_5mvSlazsVYVF5wqKRFb5UUiLWrrBdO1L5BgcxLrliJWJUVgq-tlEJ5BnNpUVlWYXlCvu19X0ynt0OIZtjpZIK-W2_0ggEoqKUSrwv3Ys-db_szuTzqGPJy2bx8mrJGLmVV1fyfrdhT2yHlPDj_4Y2glyj0pyhmAPU-ill4_j5jaqKzH7L_vy__Ai0uhmQ</recordid><startdate>20131127</startdate><enddate>20131127</enddate><creator>Farutin, Alexander</creator><creator>Rafaï, Salima</creator><creator>Dysthe, Dag Kristian</creator><creator>Duperray, Alain</creator><creator>Peyla, Philippe</creator><creator>Misbah, Chaouqi</creator><general>American Physical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9889-3035</orcidid><orcidid>https://orcid.org/0000-0002-2719-252X</orcidid></search><sort><creationdate>20131127</creationdate><title>Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations</title><author>Farutin, Alexander ; Rafaï, Salima ; Dysthe, Dag Kristian ; Duperray, Alain ; Peyla, Philippe ; Misbah, Chaouqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-5f64057d1fd976118e5df6e68fb1612f749231153510f8d7769f20776c19d2513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Physics</topic><topic>Cell Surface Extensions - physiology</topic><topic>Euglenida - physiology</topic><topic>Models, Biological</topic><topic>Physics</topic><topic>Swimming - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farutin, Alexander</creatorcontrib><creatorcontrib>Rafaï, Salima</creatorcontrib><creatorcontrib>Dysthe, Dag Kristian</creatorcontrib><creatorcontrib>Duperray, Alain</creatorcontrib><creatorcontrib>Peyla, Philippe</creatorcontrib><creatorcontrib>Misbah, Chaouqi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farutin, Alexander</au><au>Rafaï, Salima</au><au>Dysthe, Dag Kristian</au><au>Duperray, Alain</au><au>Peyla, Philippe</au><au>Misbah, Chaouqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2013-11-27</date><risdate>2013</risdate><volume>111</volume><issue>22</issue><spage>228102</spage><epage>228102</epage><pages>228102-228102</pages><artnum>228102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Microorganisms, such as bacteria, algae, or spermatozoa, are able to propel themselves forward thanks to flagella or cilia activity. By contrast, other organisms employ pronounced changes of the membrane shape to achieve propulsion, a prototypical example being the Eutreptiella gymnastica. Cells of the immune system as well as dictyostelium amoebas, traditionally believed to crawl on a substratum, can also swim in a similar way. We develop a model for these organisms: the swimmer is mimicked by a closed incompressible membrane with force density distribution (with zero total force and torque). It is shown that fast propulsion can be achieved with adequate shape adaptations. This swimming is found to consist of an entangled pusher-puller state. The autopropulsion distance over one cycle is a universal linear function of a simple geometrical dimensionless quantity A/V(2/3) (V and A are the cell volume and its membrane area). This study captures the peculiar motion of Eutreptiella gymnastica with simple force distribution.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>24329472</pmid><doi>10.1103/PhysRevLett.111.228102</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9889-3035</orcidid><orcidid>https://orcid.org/0000-0002-2719-252X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2013-11, Vol.111 (22), p.228102-228102, Article 228102
issn 0031-9007
1079-7114
language eng
recordid cdi_hal_primary_oai_HAL_hal_00908796v1
source MEDLINE; American Physical Society Journals
subjects Biological Physics
Cell Surface Extensions - physiology
Euglenida - physiology
Models, Biological
Physics
Swimming - physiology
title Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amoeboid%20swimming:%20a%20generic%20self-propulsion%20of%20cells%20in%20fluids%20by%20means%20of%20membrane%20deformations&rft.jtitle=Physical%20review%20letters&rft.au=Farutin,%20Alexander&rft.date=2013-11-27&rft.volume=111&rft.issue=22&rft.spage=228102&rft.epage=228102&rft.pages=228102-228102&rft.artnum=228102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.111.228102&rft_dat=%3Cproquest_hal_p%3E1477558451%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477558451&rft_id=info:pmid/24329472&rfr_iscdi=true