Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations
Microorganisms, such as bacteria, algae, or spermatozoa, are able to propel themselves forward thanks to flagella or cilia activity. By contrast, other organisms employ pronounced changes of the membrane shape to achieve propulsion, a prototypical example being the Eutreptiella gymnastica. Cells of...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2013-11, Vol.111 (22), p.228102-228102, Article 228102 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228102 |
---|---|
container_issue | 22 |
container_start_page | 228102 |
container_title | Physical review letters |
container_volume | 111 |
creator | Farutin, Alexander Rafaï, Salima Dysthe, Dag Kristian Duperray, Alain Peyla, Philippe Misbah, Chaouqi |
description | Microorganisms, such as bacteria, algae, or spermatozoa, are able to propel themselves forward thanks to flagella or cilia activity. By contrast, other organisms employ pronounced changes of the membrane shape to achieve propulsion, a prototypical example being the Eutreptiella gymnastica. Cells of the immune system as well as dictyostelium amoebas, traditionally believed to crawl on a substratum, can also swim in a similar way. We develop a model for these organisms: the swimmer is mimicked by a closed incompressible membrane with force density distribution (with zero total force and torque). It is shown that fast propulsion can be achieved with adequate shape adaptations. This swimming is found to consist of an entangled pusher-puller state. The autopropulsion distance over one cycle is a universal linear function of a simple geometrical dimensionless quantity A/V(2/3) (V and A are the cell volume and its membrane area). This study captures the peculiar motion of Eutreptiella gymnastica with simple force distribution. |
doi_str_mv | 10.1103/PhysRevLett.111.228102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00908796v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1477558451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-5f64057d1fd976118e5df6e68fb1612f749231153510f8d7769f20776c19d2513</originalsourceid><addsrcrecordid>eNpNUU1P3DAUtKoiWD7-AvKRHgLvOY4dc1shWpBWAlXlbDmxDa7ieBsnoP33TboUcXrSvJl5H0PIOcIlIpRXjy-7_NO9btw4zgBeMlYjsC9khSBVIRH5V7ICKLFQAPKIHOf8GwCQifqQHDFeMsUlWxGzjsk1KVia30KMoX--poY-u94NoaXZdb7YDmk7dTmkniZPW9d1mYae-m4KNtNmR6MzfV560cVmML2j1vk0RDPOmnxKDrzpsjt7ryfk6fvtr5u7YvPw4_5mvSlazsVYVF5wqKRFb5UUiLWrrBdO1L5BgcxLrliJWJUVgq-tlEJ5BnNpUVlWYXlCvu19X0ynt0OIZtjpZIK-W2_0ggEoqKUSrwv3Ys-db_szuTzqGPJy2bx8mrJGLmVV1fyfrdhT2yHlPDj_4Y2glyj0pyhmAPU-ill4_j5jaqKzH7L_vy__Ai0uhmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477558451</pqid></control><display><type>article</type><title>Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Farutin, Alexander ; Rafaï, Salima ; Dysthe, Dag Kristian ; Duperray, Alain ; Peyla, Philippe ; Misbah, Chaouqi</creator><creatorcontrib>Farutin, Alexander ; Rafaï, Salima ; Dysthe, Dag Kristian ; Duperray, Alain ; Peyla, Philippe ; Misbah, Chaouqi</creatorcontrib><description>Microorganisms, such as bacteria, algae, or spermatozoa, are able to propel themselves forward thanks to flagella or cilia activity. By contrast, other organisms employ pronounced changes of the membrane shape to achieve propulsion, a prototypical example being the Eutreptiella gymnastica. Cells of the immune system as well as dictyostelium amoebas, traditionally believed to crawl on a substratum, can also swim in a similar way. We develop a model for these organisms: the swimmer is mimicked by a closed incompressible membrane with force density distribution (with zero total force and torque). It is shown that fast propulsion can be achieved with adequate shape adaptations. This swimming is found to consist of an entangled pusher-puller state. The autopropulsion distance over one cycle is a universal linear function of a simple geometrical dimensionless quantity A/V(2/3) (V and A are the cell volume and its membrane area). This study captures the peculiar motion of Eutreptiella gymnastica with simple force distribution.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.111.228102</identifier><identifier>PMID: 24329472</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Biological Physics ; Cell Surface Extensions - physiology ; Euglenida - physiology ; Models, Biological ; Physics ; Swimming - physiology</subject><ispartof>Physical review letters, 2013-11, Vol.111 (22), p.228102-228102, Article 228102</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-5f64057d1fd976118e5df6e68fb1612f749231153510f8d7769f20776c19d2513</citedby><cites>FETCH-LOGICAL-c446t-5f64057d1fd976118e5df6e68fb1612f749231153510f8d7769f20776c19d2513</cites><orcidid>0000-0001-9889-3035 ; 0000-0002-2719-252X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24329472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00908796$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Farutin, Alexander</creatorcontrib><creatorcontrib>Rafaï, Salima</creatorcontrib><creatorcontrib>Dysthe, Dag Kristian</creatorcontrib><creatorcontrib>Duperray, Alain</creatorcontrib><creatorcontrib>Peyla, Philippe</creatorcontrib><creatorcontrib>Misbah, Chaouqi</creatorcontrib><title>Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Microorganisms, such as bacteria, algae, or spermatozoa, are able to propel themselves forward thanks to flagella or cilia activity. By contrast, other organisms employ pronounced changes of the membrane shape to achieve propulsion, a prototypical example being the Eutreptiella gymnastica. Cells of the immune system as well as dictyostelium amoebas, traditionally believed to crawl on a substratum, can also swim in a similar way. We develop a model for these organisms: the swimmer is mimicked by a closed incompressible membrane with force density distribution (with zero total force and torque). It is shown that fast propulsion can be achieved with adequate shape adaptations. This swimming is found to consist of an entangled pusher-puller state. The autopropulsion distance over one cycle is a universal linear function of a simple geometrical dimensionless quantity A/V(2/3) (V and A are the cell volume and its membrane area). This study captures the peculiar motion of Eutreptiella gymnastica with simple force distribution.</description><subject>Biological Physics</subject><subject>Cell Surface Extensions - physiology</subject><subject>Euglenida - physiology</subject><subject>Models, Biological</subject><subject>Physics</subject><subject>Swimming - physiology</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNUU1P3DAUtKoiWD7-AvKRHgLvOY4dc1shWpBWAlXlbDmxDa7ieBsnoP33TboUcXrSvJl5H0PIOcIlIpRXjy-7_NO9btw4zgBeMlYjsC9khSBVIRH5V7ICKLFQAPKIHOf8GwCQifqQHDFeMsUlWxGzjsk1KVia30KMoX--poY-u94NoaXZdb7YDmk7dTmkniZPW9d1mYae-m4KNtNmR6MzfV560cVmML2j1vk0RDPOmnxKDrzpsjt7ryfk6fvtr5u7YvPw4_5mvSlazsVYVF5wqKRFb5UUiLWrrBdO1L5BgcxLrliJWJUVgq-tlEJ5BnNpUVlWYXlCvu19X0ynt0OIZtjpZIK-W2_0ggEoqKUSrwv3Ys-db_szuTzqGPJy2bx8mrJGLmVV1fyfrdhT2yHlPDj_4Y2glyj0pyhmAPU-ill4_j5jaqKzH7L_vy__Ai0uhmQ</recordid><startdate>20131127</startdate><enddate>20131127</enddate><creator>Farutin, Alexander</creator><creator>Rafaï, Salima</creator><creator>Dysthe, Dag Kristian</creator><creator>Duperray, Alain</creator><creator>Peyla, Philippe</creator><creator>Misbah, Chaouqi</creator><general>American Physical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9889-3035</orcidid><orcidid>https://orcid.org/0000-0002-2719-252X</orcidid></search><sort><creationdate>20131127</creationdate><title>Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations</title><author>Farutin, Alexander ; Rafaï, Salima ; Dysthe, Dag Kristian ; Duperray, Alain ; Peyla, Philippe ; Misbah, Chaouqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-5f64057d1fd976118e5df6e68fb1612f749231153510f8d7769f20776c19d2513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Physics</topic><topic>Cell Surface Extensions - physiology</topic><topic>Euglenida - physiology</topic><topic>Models, Biological</topic><topic>Physics</topic><topic>Swimming - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farutin, Alexander</creatorcontrib><creatorcontrib>Rafaï, Salima</creatorcontrib><creatorcontrib>Dysthe, Dag Kristian</creatorcontrib><creatorcontrib>Duperray, Alain</creatorcontrib><creatorcontrib>Peyla, Philippe</creatorcontrib><creatorcontrib>Misbah, Chaouqi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farutin, Alexander</au><au>Rafaï, Salima</au><au>Dysthe, Dag Kristian</au><au>Duperray, Alain</au><au>Peyla, Philippe</au><au>Misbah, Chaouqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2013-11-27</date><risdate>2013</risdate><volume>111</volume><issue>22</issue><spage>228102</spage><epage>228102</epage><pages>228102-228102</pages><artnum>228102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Microorganisms, such as bacteria, algae, or spermatozoa, are able to propel themselves forward thanks to flagella or cilia activity. By contrast, other organisms employ pronounced changes of the membrane shape to achieve propulsion, a prototypical example being the Eutreptiella gymnastica. Cells of the immune system as well as dictyostelium amoebas, traditionally believed to crawl on a substratum, can also swim in a similar way. We develop a model for these organisms: the swimmer is mimicked by a closed incompressible membrane with force density distribution (with zero total force and torque). It is shown that fast propulsion can be achieved with adequate shape adaptations. This swimming is found to consist of an entangled pusher-puller state. The autopropulsion distance over one cycle is a universal linear function of a simple geometrical dimensionless quantity A/V(2/3) (V and A are the cell volume and its membrane area). This study captures the peculiar motion of Eutreptiella gymnastica with simple force distribution.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>24329472</pmid><doi>10.1103/PhysRevLett.111.228102</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9889-3035</orcidid><orcidid>https://orcid.org/0000-0002-2719-252X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2013-11, Vol.111 (22), p.228102-228102, Article 228102 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00908796v1 |
source | MEDLINE; American Physical Society Journals |
subjects | Biological Physics Cell Surface Extensions - physiology Euglenida - physiology Models, Biological Physics Swimming - physiology |
title | Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amoeboid%20swimming:%20a%20generic%20self-propulsion%20of%20cells%20in%20fluids%20by%20means%20of%20membrane%20deformations&rft.jtitle=Physical%20review%20letters&rft.au=Farutin,%20Alexander&rft.date=2013-11-27&rft.volume=111&rft.issue=22&rft.spage=228102&rft.epage=228102&rft.pages=228102-228102&rft.artnum=228102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.111.228102&rft_dat=%3Cproquest_hal_p%3E1477558451%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477558451&rft_id=info:pmid/24329472&rfr_iscdi=true |