On the Grundy and b-Chromatic Numbers of a Graph

The Grundy number of a graph G , denoted by Γ ( G ), is the largest k such that G has a greedy k -colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertexes of G . The b - chromatic number of a graph G , denoted by χ b ( G ), is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2013-04, Vol.65 (4), p.885-899
Hauptverfasser: Havet, Frédéric, Sampaio, Leonardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 899
container_issue 4
container_start_page 885
container_title Algorithmica
container_volume 65
creator Havet, Frédéric
Sampaio, Leonardo
description The Grundy number of a graph G , denoted by Γ ( G ), is the largest k such that G has a greedy k -colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertexes of G . The b - chromatic number of a graph G , denoted by χ b ( G ), is the largest k such that G has a b - colouring with k colours, that is a colouring in which each colour class contains a b - vertex , a vertex with neighbours in all other colour classes. Trivially χ b ( G ), Γ ( G )≤ Δ ( G )+1. In this paper, we show that deciding if Γ ( G )≤ Δ ( G ) is NP-complete even for a bipartite graph G . We then show that deciding if Γ ( G )≥| V ( G )|− k or if χ b ( G )≥| V ( G )|− k are fixed parameter tractable problems with respect to the parameter k .
doi_str_mv 10.1007/s00453-011-9604-4
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00905927v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00905927v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-630a3836fefaa24dcc393b115b18615f91b610652d92eaa2ba4447b22de845ef3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKs_wFuuHqIz-drNsRS1QrEXPYdkN3Fb2t2StEL_vSkrHj0NDO8NzCPkHuERAaqnDCCVYIDIjAbJ5AWZoBScgZJ4SSaAVc2kxuqa3OS8AUBeGT0hsOrpoQv0NR379kRd31LP5l0adu6wbuj7cedDynSI1BXG7btbchXdNoe73zklny_PH_MFW65e3-azJWukwAPTApyohY4hOsdl2zTCCI-oPNYaVTToNYJWvDU8FMI7KWXlOW9DLVWIYkoexrud29p9Wu9cOtnBre1itrTnHYABZXj1jYXFkW3SkHMK8U9AsOc8dsxjSx57zmNlcfjo5ML2XyHZzXBMfXnpH-kHrXNkyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Grundy and b-Chromatic Numbers of a Graph</title><source>SpringerNature Journals</source><creator>Havet, Frédéric ; Sampaio, Leonardo</creator><creatorcontrib>Havet, Frédéric ; Sampaio, Leonardo</creatorcontrib><description>The Grundy number of a graph G , denoted by Γ ( G ), is the largest k such that G has a greedy k -colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertexes of G . The b - chromatic number of a graph G , denoted by χ b ( G ), is the largest k such that G has a b - colouring with k colours, that is a colouring in which each colour class contains a b - vertex , a vertex with neighbours in all other colour classes. Trivially χ b ( G ), Γ ( G )≤ Δ ( G )+1. In this paper, we show that deciding if Γ ( G )≤ Δ ( G ) is NP-complete even for a bipartite graph G . We then show that deciding if Γ ( G )≥| V ( G )|− k or if χ b ( G )≥| V ( G )|− k are fixed parameter tractable problems with respect to the parameter k .</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-011-9604-4</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Discrete Mathematics ; Mathematics of Computing ; Theory of Computation</subject><ispartof>Algorithmica, 2013-04, Vol.65 (4), p.885-899</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-630a3836fefaa24dcc393b115b18615f91b610652d92eaa2ba4447b22de845ef3</citedby><cites>FETCH-LOGICAL-c431t-630a3836fefaa24dcc393b115b18615f91b610652d92eaa2ba4447b22de845ef3</cites><orcidid>0000-0002-3447-8112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-011-9604-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-011-9604-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00905927$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Havet, Frédéric</creatorcontrib><creatorcontrib>Sampaio, Leonardo</creatorcontrib><title>On the Grundy and b-Chromatic Numbers of a Graph</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>The Grundy number of a graph G , denoted by Γ ( G ), is the largest k such that G has a greedy k -colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertexes of G . The b - chromatic number of a graph G , denoted by χ b ( G ), is the largest k such that G has a b - colouring with k colours, that is a colouring in which each colour class contains a b - vertex , a vertex with neighbours in all other colour classes. Trivially χ b ( G ), Γ ( G )≤ Δ ( G )+1. In this paper, we show that deciding if Γ ( G )≤ Δ ( G ) is NP-complete even for a bipartite graph G . We then show that deciding if Γ ( G )≥| V ( G )|− k or if χ b ( G )≥| V ( G )|− k are fixed parameter tractable problems with respect to the parameter k .</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Discrete Mathematics</subject><subject>Mathematics of Computing</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKs_wFuuHqIz-drNsRS1QrEXPYdkN3Fb2t2StEL_vSkrHj0NDO8NzCPkHuERAaqnDCCVYIDIjAbJ5AWZoBScgZJ4SSaAVc2kxuqa3OS8AUBeGT0hsOrpoQv0NR379kRd31LP5l0adu6wbuj7cedDynSI1BXG7btbchXdNoe73zklny_PH_MFW65e3-azJWukwAPTApyohY4hOsdl2zTCCI-oPNYaVTToNYJWvDU8FMI7KWXlOW9DLVWIYkoexrud29p9Wu9cOtnBre1itrTnHYABZXj1jYXFkW3SkHMK8U9AsOc8dsxjSx57zmNlcfjo5ML2XyHZzXBMfXnpH-kHrXNkyA</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Havet, Frédéric</creator><creator>Sampaio, Leonardo</creator><general>Springer-Verlag</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3447-8112</orcidid></search><sort><creationdate>20130401</creationdate><title>On the Grundy and b-Chromatic Numbers of a Graph</title><author>Havet, Frédéric ; Sampaio, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-630a3836fefaa24dcc393b115b18615f91b610652d92eaa2ba4447b22de845ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Discrete Mathematics</topic><topic>Mathematics of Computing</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Havet, Frédéric</creatorcontrib><creatorcontrib>Sampaio, Leonardo</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Havet, Frédéric</au><au>Sampaio, Leonardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Grundy and b-Chromatic Numbers of a Graph</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>65</volume><issue>4</issue><spage>885</spage><epage>899</epage><pages>885-899</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>The Grundy number of a graph G , denoted by Γ ( G ), is the largest k such that G has a greedy k -colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertexes of G . The b - chromatic number of a graph G , denoted by χ b ( G ), is the largest k such that G has a b - colouring with k colours, that is a colouring in which each colour class contains a b - vertex , a vertex with neighbours in all other colour classes. Trivially χ b ( G ), Γ ( G )≤ Δ ( G )+1. In this paper, we show that deciding if Γ ( G )≤ Δ ( G ) is NP-complete even for a bipartite graph G . We then show that deciding if Γ ( G )≥| V ( G )|− k or if χ b ( G )≥| V ( G )|− k are fixed parameter tractable problems with respect to the parameter k .</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00453-011-9604-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3447-8112</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2013-04, Vol.65 (4), p.885-899
issn 0178-4617
1432-0541
language eng
recordid cdi_hal_primary_oai_HAL_hal_00905927v1
source SpringerNature Journals
subjects Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Discrete Mathematics
Mathematics of Computing
Theory of Computation
title On the Grundy and b-Chromatic Numbers of a Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Grundy%20and%20b-Chromatic%20Numbers%20of%20a%20Graph&rft.jtitle=Algorithmica&rft.au=Havet,%20Fr%C3%A9d%C3%A9ric&rft.date=2013-04-01&rft.volume=65&rft.issue=4&rft.spage=885&rft.epage=899&rft.pages=885-899&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-011-9604-4&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00905927v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true