TeleOphta: Machine learning and image processing methods for teleophthalmology
Abstract A complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented. The system combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images. Th...
Gespeichert in:
Veröffentlicht in: | Ingénierie et recherche biomédicale 2013-04, Vol.34 (2), p.196-203 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 2 |
container_start_page | 196 |
container_title | Ingénierie et recherche biomédicale |
container_volume | 34 |
creator | Decencière, E Cazuguel, G Zhang, X Thibault, G Klein, J.-C Meyer, F Marcotegui, B Quellec, G Lamard, M Danno, R Elie, D Massin, P Viktor, Z Erginay, A Laÿ, B Chabouis, A |
description | Abstract A complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented. The system combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images. This information, plus patient and other contextual data, is used by a classifier to compute an abnormality risk. Such a system should reduce the burden on readers on teleophthalmology networks. |
doi_str_mv | 10.1016/j.irbm.2013.01.010 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00881686v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1959031813000237</els_id><sourcerecordid>S1959031813000237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-e9e50ef37a4cf0948ad906cc5a473b908237e1afa5defde7ba782e39cbc550103</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhnNQcP34A5569dA6aZp-iAjLoq6wugfXc0jT6Ta12yxJXdh_b0rFgwdhYGCYZ2bedwi5phBRoOltG2lb7qIYKIuA-oATMqMFL0JgND8j5861ACmLGZ2Rtw12uN43g7wLXqVqdI9Bh9L2ut8Gsq8CvZNbDPbWKHRuLO5waEzlgtrYYPCw8XAju53pzPZ4SU5r2Tm8-skX5OPpcbNYhqv188tivgpVwvkQYoEcsGaZTFQNRZLLqoBUKS6TjJUF5DHLkMpa8grrCrNSZnmMrFCl4twLYhfkZprrN4u99UfaozBSi-V8JcYaQJ7TNE8P1PfGU6-yxjmL9S9AQYyOiVaMjonRMQFUTAvuJwi9ioNGK5zS2CustEU1iMro__GHP7jqdK-V7D7xiK41X7b3_ggqXCxAvI_vGb9DGQB48ewblnyMKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TeleOphta: Machine learning and image processing methods for teleophthalmology</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Decencière, E ; Cazuguel, G ; Zhang, X ; Thibault, G ; Klein, J.-C ; Meyer, F ; Marcotegui, B ; Quellec, G ; Lamard, M ; Danno, R ; Elie, D ; Massin, P ; Viktor, Z ; Erginay, A ; Laÿ, B ; Chabouis, A</creator><creatorcontrib>Decencière, E ; Cazuguel, G ; Zhang, X ; Thibault, G ; Klein, J.-C ; Meyer, F ; Marcotegui, B ; Quellec, G ; Lamard, M ; Danno, R ; Elie, D ; Massin, P ; Viktor, Z ; Erginay, A ; Laÿ, B ; Chabouis, A</creatorcontrib><description>Abstract A complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented. The system combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images. This information, plus patient and other contextual data, is used by a classifier to compute an abnormality risk. Such a system should reduce the burden on readers on teleophthalmology networks.</description><identifier>ISSN: 1959-0318</identifier><identifier>DOI: 10.1016/j.irbm.2013.01.010</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Computer Science ; Image Processing ; Internal Medicine</subject><ispartof>Ingénierie et recherche biomédicale, 2013-04, Vol.34 (2), p.196-203</ispartof><rights>Elsevier Masson SAS</rights><rights>2013 Elsevier Masson SAS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-e9e50ef37a4cf0948ad906cc5a473b908237e1afa5defde7ba782e39cbc550103</citedby><cites>FETCH-LOGICAL-c455t-e9e50ef37a4cf0948ad906cc5a473b908237e1afa5defde7ba782e39cbc550103</cites><orcidid>0000-0002-1349-8042 ; 0000-0003-1182-0736 ; 0000-0002-9678-6364 ; 0000-0002-2825-7292 ; 0000-0003-1669-7140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.irbm.2013.01.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-00881686$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Decencière, E</creatorcontrib><creatorcontrib>Cazuguel, G</creatorcontrib><creatorcontrib>Zhang, X</creatorcontrib><creatorcontrib>Thibault, G</creatorcontrib><creatorcontrib>Klein, J.-C</creatorcontrib><creatorcontrib>Meyer, F</creatorcontrib><creatorcontrib>Marcotegui, B</creatorcontrib><creatorcontrib>Quellec, G</creatorcontrib><creatorcontrib>Lamard, M</creatorcontrib><creatorcontrib>Danno, R</creatorcontrib><creatorcontrib>Elie, D</creatorcontrib><creatorcontrib>Massin, P</creatorcontrib><creatorcontrib>Viktor, Z</creatorcontrib><creatorcontrib>Erginay, A</creatorcontrib><creatorcontrib>Laÿ, B</creatorcontrib><creatorcontrib>Chabouis, A</creatorcontrib><title>TeleOphta: Machine learning and image processing methods for teleophthalmology</title><title>Ingénierie et recherche biomédicale</title><description>Abstract A complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented. The system combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images. This information, plus patient and other contextual data, is used by a classifier to compute an abnormality risk. Such a system should reduce the burden on readers on teleophthalmology networks.</description><subject>Computer Science</subject><subject>Image Processing</subject><subject>Internal Medicine</subject><issn>1959-0318</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhnNQcP34A5569dA6aZp-iAjLoq6wugfXc0jT6Ta12yxJXdh_b0rFgwdhYGCYZ2bedwi5phBRoOltG2lb7qIYKIuA-oATMqMFL0JgND8j5861ACmLGZ2Rtw12uN43g7wLXqVqdI9Bh9L2ut8Gsq8CvZNbDPbWKHRuLO5waEzlgtrYYPCw8XAju53pzPZ4SU5r2Tm8-skX5OPpcbNYhqv188tivgpVwvkQYoEcsGaZTFQNRZLLqoBUKS6TjJUF5DHLkMpa8grrCrNSZnmMrFCl4twLYhfkZprrN4u99UfaozBSi-V8JcYaQJ7TNE8P1PfGU6-yxjmL9S9AQYyOiVaMjonRMQFUTAvuJwi9ioNGK5zS2CustEU1iMro__GHP7jqdK-V7D7xiK41X7b3_ggqXCxAvI_vGb9DGQB48ewblnyMKA</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Decencière, E</creator><creator>Cazuguel, G</creator><creator>Zhang, X</creator><creator>Thibault, G</creator><creator>Klein, J.-C</creator><creator>Meyer, F</creator><creator>Marcotegui, B</creator><creator>Quellec, G</creator><creator>Lamard, M</creator><creator>Danno, R</creator><creator>Elie, D</creator><creator>Massin, P</creator><creator>Viktor, Z</creator><creator>Erginay, A</creator><creator>Laÿ, B</creator><creator>Chabouis, A</creator><general>Elsevier Masson SAS</general><general>Elsevier Masson</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1349-8042</orcidid><orcidid>https://orcid.org/0000-0003-1182-0736</orcidid><orcidid>https://orcid.org/0000-0002-9678-6364</orcidid><orcidid>https://orcid.org/0000-0002-2825-7292</orcidid><orcidid>https://orcid.org/0000-0003-1669-7140</orcidid></search><sort><creationdate>20130401</creationdate><title>TeleOphta: Machine learning and image processing methods for teleophthalmology</title><author>Decencière, E ; Cazuguel, G ; Zhang, X ; Thibault, G ; Klein, J.-C ; Meyer, F ; Marcotegui, B ; Quellec, G ; Lamard, M ; Danno, R ; Elie, D ; Massin, P ; Viktor, Z ; Erginay, A ; Laÿ, B ; Chabouis, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-e9e50ef37a4cf0948ad906cc5a473b908237e1afa5defde7ba782e39cbc550103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer Science</topic><topic>Image Processing</topic><topic>Internal Medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Decencière, E</creatorcontrib><creatorcontrib>Cazuguel, G</creatorcontrib><creatorcontrib>Zhang, X</creatorcontrib><creatorcontrib>Thibault, G</creatorcontrib><creatorcontrib>Klein, J.-C</creatorcontrib><creatorcontrib>Meyer, F</creatorcontrib><creatorcontrib>Marcotegui, B</creatorcontrib><creatorcontrib>Quellec, G</creatorcontrib><creatorcontrib>Lamard, M</creatorcontrib><creatorcontrib>Danno, R</creatorcontrib><creatorcontrib>Elie, D</creatorcontrib><creatorcontrib>Massin, P</creatorcontrib><creatorcontrib>Viktor, Z</creatorcontrib><creatorcontrib>Erginay, A</creatorcontrib><creatorcontrib>Laÿ, B</creatorcontrib><creatorcontrib>Chabouis, A</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Ingénierie et recherche biomédicale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Decencière, E</au><au>Cazuguel, G</au><au>Zhang, X</au><au>Thibault, G</au><au>Klein, J.-C</au><au>Meyer, F</au><au>Marcotegui, B</au><au>Quellec, G</au><au>Lamard, M</au><au>Danno, R</au><au>Elie, D</au><au>Massin, P</au><au>Viktor, Z</au><au>Erginay, A</au><au>Laÿ, B</au><au>Chabouis, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TeleOphta: Machine learning and image processing methods for teleophthalmology</atitle><jtitle>Ingénierie et recherche biomédicale</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>34</volume><issue>2</issue><spage>196</spage><epage>203</epage><pages>196-203</pages><issn>1959-0318</issn><abstract>Abstract A complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented. The system combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images. This information, plus patient and other contextual data, is used by a classifier to compute an abnormality risk. Such a system should reduce the burden on readers on teleophthalmology networks.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.irbm.2013.01.010</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1349-8042</orcidid><orcidid>https://orcid.org/0000-0003-1182-0736</orcidid><orcidid>https://orcid.org/0000-0002-9678-6364</orcidid><orcidid>https://orcid.org/0000-0002-2825-7292</orcidid><orcidid>https://orcid.org/0000-0003-1669-7140</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1959-0318 |
ispartof | Ingénierie et recherche biomédicale, 2013-04, Vol.34 (2), p.196-203 |
issn | 1959-0318 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00881686v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Computer Science Image Processing Internal Medicine |
title | TeleOphta: Machine learning and image processing methods for teleophthalmology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TeleOphta:%20Machine%20learning%20and%20image%20processing%20methods%20for%20teleophthalmology&rft.jtitle=Ing%C3%A9nierie%20et%20recherche%20biom%C3%A9dicale&rft.au=Decenci%C3%A8re,%20E&rft.date=2013-04-01&rft.volume=34&rft.issue=2&rft.spage=196&rft.epage=203&rft.pages=196-203&rft.issn=1959-0318&rft_id=info:doi/10.1016/j.irbm.2013.01.010&rft_dat=%3Celsevier_hal_p%3ES1959031813000237%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1959031813000237&rfr_iscdi=true |