LSE method using the CHSS model

Testing the reliability at a nominal stress level may lead to extensive test time. Estimations of reliability parameters can be obtained faster thanks to step-stress accelerated life tests (ALT). Usually, a transfer functional defined among a given class of parametric functions is required, but Bagd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical planning and inference 2009-05, Vol.139 (5), p.1809-1820
Hauptverfasser: Lantiéri, P., Guérin, F., Voiculescu, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1820
container_issue 5
container_start_page 1809
container_title Journal of statistical planning and inference
container_volume 139
creator Lantiéri, P.
Guérin, F.
Voiculescu, S.
description Testing the reliability at a nominal stress level may lead to extensive test time. Estimations of reliability parameters can be obtained faster thanks to step-stress accelerated life tests (ALT). Usually, a transfer functional defined among a given class of parametric functions is required, but Bagdonavičius and Nikulin showed that ALT tests are still possible without any assumption about this functional. When shape and scale parameters of the lifetime distribution change with the stress level, they suggested an ALT method using a model called CHanging Shape and Scale (CHSS). They estimated the lifetime parameters at the nominal stress with maximum likelihood estimation (MLE). However, this method usually requires an initialization of lifetime parameters, which may be difficult when no similar product has been tested before. This paper aims to face this issue by using an iterating least square estimation (LSE) method. It will enable one to initialize the optimization required to carry out the MLE and it will give estimations that can sometimes be better than those given by MLE.
doi_str_mv 10.1016/j.jspi.2008.05.031
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00881225v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378375808002553</els_id><sourcerecordid>oai_HAL_hal_00881225v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-264b4f61155d47a012ef0aa227c285e8537199b2bd7c14a423adeb20c02801903</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsP75Al7MxYOHxJnZbHYLXkqpVgh4qJ6XzWZjN6RNycaC396ESI_OZWB4v5l5j7E7hAQBs6c6qcPBJwSgEhAJcDxjM1SSx4gSz9kMuFQxl0JdsqsQahgqAzFj9_lmFe1cv23L6Dv4_VfUb120XG820a4tXXPDLirTBHf716_Z58vqY7mO8_fXt-Uijy0X8z6mLC3SKkMUokylASRXgTFE0pISTgkucT4vqCilxdSkxE3pCgILpADnwK_Z47R3axp96PzOdD-6NV6vF7keZ4MzhUTiiIOWJq3t2hA6V50ABD3GoWs9xqHHODQIPcQxQA8TdDDBmqbqzN76cCIJOadUjo88Tzo3uD161-lgvdtbV_rO2V6Xrf_vzC8BmnFx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LSE method using the CHSS model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lantiéri, P. ; Guérin, F. ; Voiculescu, S.</creator><creatorcontrib>Lantiéri, P. ; Guérin, F. ; Voiculescu, S.</creatorcontrib><description>Testing the reliability at a nominal stress level may lead to extensive test time. Estimations of reliability parameters can be obtained faster thanks to step-stress accelerated life tests (ALT). Usually, a transfer functional defined among a given class of parametric functions is required, but Bagdonavičius and Nikulin showed that ALT tests are still possible without any assumption about this functional. When shape and scale parameters of the lifetime distribution change with the stress level, they suggested an ALT method using a model called CHanging Shape and Scale (CHSS). They estimated the lifetime parameters at the nominal stress with maximum likelihood estimation (MLE). However, this method usually requires an initialization of lifetime parameters, which may be difficult when no similar product has been tested before. This paper aims to face this issue by using an iterating least square estimation (LSE) method. It will enable one to initialize the optimization required to carry out the MLE and it will give estimations that can sometimes be better than those given by MLE.</description><identifier>ISSN: 0378-3758</identifier><identifier>EISSN: 1873-1171</identifier><identifier>DOI: 10.1016/j.jspi.2008.05.031</identifier><identifier>CODEN: JSPIDN</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Accelerated life testing ; Applications ; Bootstrap ; Changing shape and scale ; Distribution theory ; Engineering Sciences ; Exact sciences and technology ; General topics ; Least square estimation ; Mathematics ; Mechanics ; Mechanics of materials ; Physics ; Probability and statistics ; Probability theory and stochastic processes ; Reliability, life testing, quality control ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Statistics ; Statistics Theory ; Step-stress test ; Weibull distribution</subject><ispartof>Journal of statistical planning and inference, 2009-05, Vol.139 (5), p.1809-1820</ispartof><rights>2008</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-264b4f61155d47a012ef0aa227c285e8537199b2bd7c14a423adeb20c02801903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jspi.2008.05.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21332470$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00881225$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lantiéri, P.</creatorcontrib><creatorcontrib>Guérin, F.</creatorcontrib><creatorcontrib>Voiculescu, S.</creatorcontrib><title>LSE method using the CHSS model</title><title>Journal of statistical planning and inference</title><description>Testing the reliability at a nominal stress level may lead to extensive test time. Estimations of reliability parameters can be obtained faster thanks to step-stress accelerated life tests (ALT). Usually, a transfer functional defined among a given class of parametric functions is required, but Bagdonavičius and Nikulin showed that ALT tests are still possible without any assumption about this functional. When shape and scale parameters of the lifetime distribution change with the stress level, they suggested an ALT method using a model called CHanging Shape and Scale (CHSS). They estimated the lifetime parameters at the nominal stress with maximum likelihood estimation (MLE). However, this method usually requires an initialization of lifetime parameters, which may be difficult when no similar product has been tested before. This paper aims to face this issue by using an iterating least square estimation (LSE) method. It will enable one to initialize the optimization required to carry out the MLE and it will give estimations that can sometimes be better than those given by MLE.</description><subject>Accelerated life testing</subject><subject>Applications</subject><subject>Bootstrap</subject><subject>Changing shape and scale</subject><subject>Distribution theory</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Least square estimation</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Physics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Reliability, life testing, quality control</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Statistics</subject><subject>Statistics Theory</subject><subject>Step-stress test</subject><subject>Weibull distribution</subject><issn>0378-3758</issn><issn>1873-1171</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsP75Al7MxYOHxJnZbHYLXkqpVgh4qJ6XzWZjN6RNycaC396ESI_OZWB4v5l5j7E7hAQBs6c6qcPBJwSgEhAJcDxjM1SSx4gSz9kMuFQxl0JdsqsQahgqAzFj9_lmFe1cv23L6Dv4_VfUb120XG820a4tXXPDLirTBHf716_Z58vqY7mO8_fXt-Uijy0X8z6mLC3SKkMUokylASRXgTFE0pISTgkucT4vqCilxdSkxE3pCgILpADnwK_Z47R3axp96PzOdD-6NV6vF7keZ4MzhUTiiIOWJq3t2hA6V50ABD3GoWs9xqHHODQIPcQxQA8TdDDBmqbqzN76cCIJOadUjo88Tzo3uD161-lgvdtbV_rO2V6Xrf_vzC8BmnFx</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Lantiéri, P.</creator><creator>Guérin, F.</creator><creator>Voiculescu, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20090501</creationdate><title>LSE method using the CHSS model</title><author>Lantiéri, P. ; Guérin, F. ; Voiculescu, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-264b4f61155d47a012ef0aa227c285e8537199b2bd7c14a423adeb20c02801903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accelerated life testing</topic><topic>Applications</topic><topic>Bootstrap</topic><topic>Changing shape and scale</topic><topic>Distribution theory</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Least square estimation</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Physics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Reliability, life testing, quality control</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Statistics</topic><topic>Statistics Theory</topic><topic>Step-stress test</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lantiéri, P.</creatorcontrib><creatorcontrib>Guérin, F.</creatorcontrib><creatorcontrib>Voiculescu, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of statistical planning and inference</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lantiéri, P.</au><au>Guérin, F.</au><au>Voiculescu, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSE method using the CHSS model</atitle><jtitle>Journal of statistical planning and inference</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>139</volume><issue>5</issue><spage>1809</spage><epage>1820</epage><pages>1809-1820</pages><issn>0378-3758</issn><eissn>1873-1171</eissn><coden>JSPIDN</coden><abstract>Testing the reliability at a nominal stress level may lead to extensive test time. Estimations of reliability parameters can be obtained faster thanks to step-stress accelerated life tests (ALT). Usually, a transfer functional defined among a given class of parametric functions is required, but Bagdonavičius and Nikulin showed that ALT tests are still possible without any assumption about this functional. When shape and scale parameters of the lifetime distribution change with the stress level, they suggested an ALT method using a model called CHanging Shape and Scale (CHSS). They estimated the lifetime parameters at the nominal stress with maximum likelihood estimation (MLE). However, this method usually requires an initialization of lifetime parameters, which may be difficult when no similar product has been tested before. This paper aims to face this issue by using an iterating least square estimation (LSE) method. It will enable one to initialize the optimization required to carry out the MLE and it will give estimations that can sometimes be better than those given by MLE.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jspi.2008.05.031</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-3758
ispartof Journal of statistical planning and inference, 2009-05, Vol.139 (5), p.1809-1820
issn 0378-3758
1873-1171
language eng
recordid cdi_hal_primary_oai_HAL_hal_00881225v1
source Access via ScienceDirect (Elsevier)
subjects Accelerated life testing
Applications
Bootstrap
Changing shape and scale
Distribution theory
Engineering Sciences
Exact sciences and technology
General topics
Least square estimation
Mathematics
Mechanics
Mechanics of materials
Physics
Probability and statistics
Probability theory and stochastic processes
Reliability, life testing, quality control
Sciences and techniques of general use
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
Statistics
Statistics Theory
Step-stress test
Weibull distribution
title LSE method using the CHSS model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSE%20method%20using%20the%20CHSS%20model&rft.jtitle=Journal%20of%20statistical%20planning%20and%20inference&rft.au=Lanti%C3%A9ri,%20P.&rft.date=2009-05-01&rft.volume=139&rft.issue=5&rft.spage=1809&rft.epage=1820&rft.pages=1809-1820&rft.issn=0378-3758&rft.eissn=1873-1171&rft.coden=JSPIDN&rft_id=info:doi/10.1016/j.jspi.2008.05.031&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00881225v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378375808002553&rfr_iscdi=true