Second-Order Approximation for Variance Reduction in Multiple Importance Sampling
Monte Carlo Techniques are widely used in Computer Graphics to generate realistic images. Multiple Importance Sampling reduces the impact of choosing a dedicated strategy by balancing the number of samples between different strategies. However, an automatic choice of the optimal balancing remains a...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2013-10, Vol.32 (7), p.131-136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | 7 |
container_start_page | 131 |
container_title | Computer graphics forum |
container_volume | 32 |
creator | Lu, H. Pacanowski, R. Granier, X. |
description | Monte Carlo Techniques are widely used in Computer Graphics to generate realistic images. Multiple Importance Sampling reduces the impact of choosing a dedicated strategy by balancing the number of samples between different strategies. However, an automatic choice of the optimal balancing remains a difficult problem. Without any scene characteristics knowledge, the default choice is to select the same number of samples from different strategies and to use them with heuristic techniques (e.g., balance, power or maximum). In this paper, we introduce a second‐order approximation of variance for balance heuristic. Based on this approximation, we introduce an automatic distribution of samples for direct lighting without any prior knowledge of the scene characteristics. We demonstrate that for all our test scenes (with different types of materials, light sources and visibility complexity), our method actually reduces variance in average. We also propose an implementation with low overhead for offline and GPU applications. We hope that this approach will help developing new balancing strategies. |
doi_str_mv | 10.1111/cgf.12220 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00878654v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1494365669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4370-ed24e1790c21173ec6e923312b24baafc8fad60f5483932712a81de0c488cc763</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EEkvhwD-IxAUOaT22YzvH1YrdVtq2KgX2aLnOpLhk42AntP33dXehSEj1ZazR92bm6RHyHugh5HfkrttDYIzRF2QGQqpSy6p-SWYU8l_RqnpN3qR0QykVSlYzcnGJLvRNeR4bjMV8GGK481s7-tAXbYjFdxu97R0WX7CZ3K7t--J06kY_dFicbIcQxx1wabdD5_vrt-RVa7uE7_7UA_Jt-fnr4rhcn69OFvN16QRXtMSGCQRVU8cAFEcnsWacA7ti4sra1unWNpK2ldC85kwBsxoapE5o7ZyS_IB82s_9YTszxHx0vDfBenM8X5vHHqVaZffiN2T2457N9n5NmEaz9clh19kew5QMiFpwWUlZZ_TDf-hNmGKfnWRKggChqf633MWQUsT26QKg5jEIk4MwuyAye7Rnb32H98-DZrFa_lWUe4VPI949KWz8aaTiqjKbs5VZbmDDNytuOH8AnTuWnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461414808</pqid></control><display><type>article</type><title>Second-Order Approximation for Variance Reduction in Multiple Importance Sampling</title><source>EBSCOhost Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Lu, H. ; Pacanowski, R. ; Granier, X.</creator><creatorcontrib>Lu, H. ; Pacanowski, R. ; Granier, X.</creatorcontrib><description>Monte Carlo Techniques are widely used in Computer Graphics to generate realistic images. Multiple Importance Sampling reduces the impact of choosing a dedicated strategy by balancing the number of samples between different strategies. However, an automatic choice of the optimal balancing remains a difficult problem. Without any scene characteristics knowledge, the default choice is to select the same number of samples from different strategies and to use them with heuristic techniques (e.g., balance, power or maximum). In this paper, we introduce a second‐order approximation of variance for balance heuristic. Based on this approximation, we introduce an automatic distribution of samples for direct lighting without any prior knowledge of the scene characteristics. We demonstrate that for all our test scenes (with different types of materials, light sources and visibility complexity), our method actually reduces variance in average. We also propose an implementation with low overhead for offline and GPU applications. We hope that this approach will help developing new balancing strategies.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12220</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Approximation ; Computer Science ; Graphics ; Modeling and Simulation</subject><ispartof>Computer graphics forum, 2013-10, Vol.32 (7), p.131-136</ispartof><rights>2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.</rights><rights>2013 The Eurographics Association and John Wiley & Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4370-ed24e1790c21173ec6e923312b24baafc8fad60f5483932712a81de0c488cc763</citedby><cites>FETCH-LOGICAL-c4370-ed24e1790c21173ec6e923312b24baafc8fad60f5483932712a81de0c488cc763</cites><orcidid>0000-0003-1349-2297 ; 0000-0002-5222-4626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.12220$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.12220$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00878654$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, H.</creatorcontrib><creatorcontrib>Pacanowski, R.</creatorcontrib><creatorcontrib>Granier, X.</creatorcontrib><title>Second-Order Approximation for Variance Reduction in Multiple Importance Sampling</title><title>Computer graphics forum</title><addtitle>Computer Graphics Forum</addtitle><description>Monte Carlo Techniques are widely used in Computer Graphics to generate realistic images. Multiple Importance Sampling reduces the impact of choosing a dedicated strategy by balancing the number of samples between different strategies. However, an automatic choice of the optimal balancing remains a difficult problem. Without any scene characteristics knowledge, the default choice is to select the same number of samples from different strategies and to use them with heuristic techniques (e.g., balance, power or maximum). In this paper, we introduce a second‐order approximation of variance for balance heuristic. Based on this approximation, we introduce an automatic distribution of samples for direct lighting without any prior knowledge of the scene characteristics. We demonstrate that for all our test scenes (with different types of materials, light sources and visibility complexity), our method actually reduces variance in average. We also propose an implementation with low overhead for offline and GPU applications. We hope that this approach will help developing new balancing strategies.</description><subject>Approximation</subject><subject>Computer Science</subject><subject>Graphics</subject><subject>Modeling and Simulation</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0EEkvhwD-IxAUOaT22YzvH1YrdVtq2KgX2aLnOpLhk42AntP33dXehSEj1ZazR92bm6RHyHugh5HfkrttDYIzRF2QGQqpSy6p-SWYU8l_RqnpN3qR0QykVSlYzcnGJLvRNeR4bjMV8GGK481s7-tAXbYjFdxu97R0WX7CZ3K7t--J06kY_dFicbIcQxx1wabdD5_vrt-RVa7uE7_7UA_Jt-fnr4rhcn69OFvN16QRXtMSGCQRVU8cAFEcnsWacA7ti4sra1unWNpK2ldC85kwBsxoapE5o7ZyS_IB82s_9YTszxHx0vDfBenM8X5vHHqVaZffiN2T2457N9n5NmEaz9clh19kew5QMiFpwWUlZZ_TDf-hNmGKfnWRKggChqf633MWQUsT26QKg5jEIk4MwuyAye7Rnb32H98-DZrFa_lWUe4VPI949KWz8aaTiqjKbs5VZbmDDNytuOH8AnTuWnQ</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Lu, H.</creator><creator>Pacanowski, R.</creator><creator>Granier, X.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1349-2297</orcidid><orcidid>https://orcid.org/0000-0002-5222-4626</orcidid></search><sort><creationdate>201310</creationdate><title>Second-Order Approximation for Variance Reduction in Multiple Importance Sampling</title><author>Lu, H. ; Pacanowski, R. ; Granier, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4370-ed24e1790c21173ec6e923312b24baafc8fad60f5483932712a81de0c488cc763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Computer Science</topic><topic>Graphics</topic><topic>Modeling and Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, H.</creatorcontrib><creatorcontrib>Pacanowski, R.</creatorcontrib><creatorcontrib>Granier, X.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, H.</au><au>Pacanowski, R.</au><au>Granier, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-Order Approximation for Variance Reduction in Multiple Importance Sampling</atitle><jtitle>Computer graphics forum</jtitle><addtitle>Computer Graphics Forum</addtitle><date>2013-10</date><risdate>2013</risdate><volume>32</volume><issue>7</issue><spage>131</spage><epage>136</epage><pages>131-136</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Monte Carlo Techniques are widely used in Computer Graphics to generate realistic images. Multiple Importance Sampling reduces the impact of choosing a dedicated strategy by balancing the number of samples between different strategies. However, an automatic choice of the optimal balancing remains a difficult problem. Without any scene characteristics knowledge, the default choice is to select the same number of samples from different strategies and to use them with heuristic techniques (e.g., balance, power or maximum). In this paper, we introduce a second‐order approximation of variance for balance heuristic. Based on this approximation, we introduce an automatic distribution of samples for direct lighting without any prior knowledge of the scene characteristics. We demonstrate that for all our test scenes (with different types of materials, light sources and visibility complexity), our method actually reduces variance in average. We also propose an implementation with low overhead for offline and GPU applications. We hope that this approach will help developing new balancing strategies.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12220</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1349-2297</orcidid><orcidid>https://orcid.org/0000-0002-5222-4626</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2013-10, Vol.32 (7), p.131-136 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00878654v1 |
source | EBSCOhost Business Source Complete; Wiley Online Library All Journals |
subjects | Approximation Computer Science Graphics Modeling and Simulation |
title | Second-Order Approximation for Variance Reduction in Multiple Importance Sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-Order%20Approximation%20for%20Variance%20Reduction%20in%20Multiple%20Importance%20Sampling&rft.jtitle=Computer%20graphics%20forum&rft.au=Lu,%20H.&rft.date=2013-10&rft.volume=32&rft.issue=7&rft.spage=131&rft.epage=136&rft.pages=131-136&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12220&rft_dat=%3Cproquest_hal_p%3E1494365669%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461414808&rft_id=info:pmid/&rfr_iscdi=true |