Hydrodynamics of gas–liquid Taylor flow in rectangular microchannels
The effect of fluid properties and operating conditions on the generation of gas–liquid Taylor flow in microchannels has been investigated experimentally and numerically. Visualisation experiments and 2D numerical simulations have been performed to study bubble and slug lengths, liquid film hold-up...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2012-01, Vol.12 (1-4), p.355-369 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | 1-4 |
container_start_page | 355 |
container_title | Microfluidics and nanofluidics |
container_volume | 12 |
creator | Abadie, Thomas Aubin, Joëlle Legendre, Dominique Xuereb, Catherine |
description | The effect of fluid properties and operating conditions on the generation of gas–liquid Taylor flow in microchannels has been investigated experimentally and numerically. Visualisation experiments and 2D numerical simulations have been performed to study bubble and slug lengths, liquid film hold-up and bubble velocities. The results show that the bubble and slug lengths increase as a function of the gas and liquid flow rate ratios. The bubble and slug lengths follow the model developed by Garstecki et al. (Lab chip 6:437–446,
2006
) and van Steijn et al. (Chem Eng Sci 62:7505–7514,
2007
), however, the model coefficients appear to be dependent on the liquid properties and flow conditions in some cases. The ratio of the bubble velocity to superficial two-phase velocity is close to unity, which confirms a thin liquid film under the assumption of a stagnant liquid film. Numerical simulations confirm the hypothesis of a stagnant liquid film and provide information on the thickness of the liquid film. |
doi_str_mv | 10.1007/s10404-011-0880-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00878398v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785104871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-f2338ac1ae413618832edbcf819c73bbe6ed5f4c60199a2cdddd129637a7ee2b3</originalsourceid><addsrcrecordid>eNqNkc9q3DAQh01JoPnTB-jNUArtwc2MZMvSMYQmG1joJTmLWVneOGilRFq37C3v0Dfsk0TGYSmBQHSRGH36mNGvKD4j_ECA9iwh1FBXgFiBlFDJD8URCuRVrRQc7M-SfSyOU7oHqFuGcFRcLnZdDN3O02YwqQx9uab07-mvGx7HoStvaOdCLHsX_pSDL6M1W_Lr0VEsMx-DuSPvrUunxWFPLtlPL_tJcXv58-ZiUS1_XV1fnC8r0yi2rXrGuSSDZGvkAqXkzHYr00tUpuWrlRW2a_raCECliJkuL2RK8JZaa9mKnxTfZ-8dOf0Qhw3FnQ406MX5Uk81ANlKruRvzOy3mX2I4XG0aas3QzLWOfI2jEljja0UbSPEO9EGUGb0yyv0PozR56E1gmpEnhAmIc5U_qOUou33zSLoKTA9B6ZzYHoKTE_mry9mSoZcH8mbIe0fsqZRwFmTOTZzKV_5tY3_d_CW_BnnkaSc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095623306</pqid></control><display><type>article</type><title>Hydrodynamics of gas–liquid Taylor flow in rectangular microchannels</title><source>SpringerLink (Online service)</source><creator>Abadie, Thomas ; Aubin, Joëlle ; Legendre, Dominique ; Xuereb, Catherine</creator><creatorcontrib>Abadie, Thomas ; Aubin, Joëlle ; Legendre, Dominique ; Xuereb, Catherine</creatorcontrib><description>The effect of fluid properties and operating conditions on the generation of gas–liquid Taylor flow in microchannels has been investigated experimentally and numerically. Visualisation experiments and 2D numerical simulations have been performed to study bubble and slug lengths, liquid film hold-up and bubble velocities. The results show that the bubble and slug lengths increase as a function of the gas and liquid flow rate ratios. The bubble and slug lengths follow the model developed by Garstecki et al. (Lab chip 6:437–446,
2006
) and van Steijn et al. (Chem Eng Sci 62:7505–7514,
2007
), however, the model coefficients appear to be dependent on the liquid properties and flow conditions in some cases. The ratio of the bubble velocity to superficial two-phase velocity is close to unity, which confirms a thin liquid film under the assumption of a stagnant liquid film. Numerical simulations confirm the hypothesis of a stagnant liquid film and provide information on the thickness of the liquid film.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-011-0880-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Applied fluid mechanics ; Biomedical Engineering and Bioengineering ; Bubbles ; Chemical engineering ; Chemical Sciences ; Computational fluid dynamics ; Computer simulation ; Engineering ; Engineering Fluid Dynamics ; Engineering Sciences ; Exact sciences and technology ; Flow rates ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluidics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamics ; Liquid films ; Mathematical models ; Mechanics ; Nanostructure ; Nanotechnology and Microengineering ; Physics ; Research Paper ; Slugs</subject><ispartof>Microfluidics and nanofluidics, 2012-01, Vol.12 (1-4), p.355-369</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-f2338ac1ae413618832edbcf819c73bbe6ed5f4c60199a2cdddd129637a7ee2b3</citedby><cites>FETCH-LOGICAL-c592t-f2338ac1ae413618832edbcf819c73bbe6ed5f4c60199a2cdddd129637a7ee2b3</cites><orcidid>0000-0002-6021-7119 ; 0000-0001-6230-5158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-011-0880-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-011-0880-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25590325$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00878398$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abadie, Thomas</creatorcontrib><creatorcontrib>Aubin, Joëlle</creatorcontrib><creatorcontrib>Legendre, Dominique</creatorcontrib><creatorcontrib>Xuereb, Catherine</creatorcontrib><title>Hydrodynamics of gas–liquid Taylor flow in rectangular microchannels</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>The effect of fluid properties and operating conditions on the generation of gas–liquid Taylor flow in microchannels has been investigated experimentally and numerically. Visualisation experiments and 2D numerical simulations have been performed to study bubble and slug lengths, liquid film hold-up and bubble velocities. The results show that the bubble and slug lengths increase as a function of the gas and liquid flow rate ratios. The bubble and slug lengths follow the model developed by Garstecki et al. (Lab chip 6:437–446,
2006
) and van Steijn et al. (Chem Eng Sci 62:7505–7514,
2007
), however, the model coefficients appear to be dependent on the liquid properties and flow conditions in some cases. The ratio of the bubble velocity to superficial two-phase velocity is close to unity, which confirms a thin liquid film under the assumption of a stagnant liquid film. Numerical simulations confirm the hypothesis of a stagnant liquid film and provide information on the thickness of the liquid film.</description><subject>Analytical Chemistry</subject><subject>Applied fluid mechanics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Bubbles</subject><subject>Chemical engineering</subject><subject>Chemical Sciences</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Flow rates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluidics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamics</subject><subject>Liquid films</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Nanostructure</subject><subject>Nanotechnology and Microengineering</subject><subject>Physics</subject><subject>Research Paper</subject><subject>Slugs</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc9q3DAQh01JoPnTB-jNUArtwc2MZMvSMYQmG1joJTmLWVneOGilRFq37C3v0Dfsk0TGYSmBQHSRGH36mNGvKD4j_ECA9iwh1FBXgFiBlFDJD8URCuRVrRQc7M-SfSyOU7oHqFuGcFRcLnZdDN3O02YwqQx9uab07-mvGx7HoStvaOdCLHsX_pSDL6M1W_Lr0VEsMx-DuSPvrUunxWFPLtlPL_tJcXv58-ZiUS1_XV1fnC8r0yi2rXrGuSSDZGvkAqXkzHYr00tUpuWrlRW2a_raCECliJkuL2RK8JZaa9mKnxTfZ-8dOf0Qhw3FnQ406MX5Uk81ANlKruRvzOy3mX2I4XG0aas3QzLWOfI2jEljja0UbSPEO9EGUGb0yyv0PozR56E1gmpEnhAmIc5U_qOUou33zSLoKTA9B6ZzYHoKTE_mry9mSoZcH8mbIe0fsqZRwFmTOTZzKV_5tY3_d_CW_BnnkaSc</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Abadie, Thomas</creator><creator>Aubin, Joëlle</creator><creator>Legendre, Dominique</creator><creator>Xuereb, Catherine</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><scope>7SP</scope><scope>7U5</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6021-7119</orcidid><orcidid>https://orcid.org/0000-0001-6230-5158</orcidid></search><sort><creationdate>20120101</creationdate><title>Hydrodynamics of gas–liquid Taylor flow in rectangular microchannels</title><author>Abadie, Thomas ; Aubin, Joëlle ; Legendre, Dominique ; Xuereb, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-f2338ac1ae413618832edbcf819c73bbe6ed5f4c60199a2cdddd129637a7ee2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical Chemistry</topic><topic>Applied fluid mechanics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Bubbles</topic><topic>Chemical engineering</topic><topic>Chemical Sciences</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Flow rates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluidics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamics</topic><topic>Liquid films</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Nanostructure</topic><topic>Nanotechnology and Microengineering</topic><topic>Physics</topic><topic>Research Paper</topic><topic>Slugs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abadie, Thomas</creatorcontrib><creatorcontrib>Aubin, Joëlle</creatorcontrib><creatorcontrib>Legendre, Dominique</creatorcontrib><creatorcontrib>Xuereb, Catherine</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abadie, Thomas</au><au>Aubin, Joëlle</au><au>Legendre, Dominique</au><au>Xuereb, Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamics of gas–liquid Taylor flow in rectangular microchannels</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2012-01-01</date><risdate>2012</risdate><volume>12</volume><issue>1-4</issue><spage>355</spage><epage>369</epage><pages>355-369</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>The effect of fluid properties and operating conditions on the generation of gas–liquid Taylor flow in microchannels has been investigated experimentally and numerically. Visualisation experiments and 2D numerical simulations have been performed to study bubble and slug lengths, liquid film hold-up and bubble velocities. The results show that the bubble and slug lengths increase as a function of the gas and liquid flow rate ratios. The bubble and slug lengths follow the model developed by Garstecki et al. (Lab chip 6:437–446,
2006
) and van Steijn et al. (Chem Eng Sci 62:7505–7514,
2007
), however, the model coefficients appear to be dependent on the liquid properties and flow conditions in some cases. The ratio of the bubble velocity to superficial two-phase velocity is close to unity, which confirms a thin liquid film under the assumption of a stagnant liquid film. Numerical simulations confirm the hypothesis of a stagnant liquid film and provide information on the thickness of the liquid film.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10404-011-0880-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6021-7119</orcidid><orcidid>https://orcid.org/0000-0001-6230-5158</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2012-01, Vol.12 (1-4), p.355-369 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00878398v1 |
source | SpringerLink (Online service) |
subjects | Analytical Chemistry Applied fluid mechanics Biomedical Engineering and Bioengineering Bubbles Chemical engineering Chemical Sciences Computational fluid dynamics Computer simulation Engineering Engineering Fluid Dynamics Engineering Sciences Exact sciences and technology Flow rates Fluid dynamics Fluid flow Fluid mechanics Fluidics Fluids mechanics Fundamental areas of phenomenology (including applications) Hydrodynamics Liquid films Mathematical models Mechanics Nanostructure Nanotechnology and Microengineering Physics Research Paper Slugs |
title | Hydrodynamics of gas–liquid Taylor flow in rectangular microchannels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamics%20of%20gas%E2%80%93liquid%20Taylor%20flow%20in%20rectangular%20microchannels&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Abadie,%20Thomas&rft.date=2012-01-01&rft.volume=12&rft.issue=1-4&rft.spage=355&rft.epage=369&rft.pages=355-369&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-011-0880-8&rft_dat=%3Cproquest_hal_p%3E2785104871%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095623306&rft_id=info:pmid/&rfr_iscdi=true |