Hidden surface states at non-polar GaN (101¯) facets: Intrinsic pinning of nanowires

We investigate the electronic structure of the GaN(101¯0) prototype surface for GaN nanowire sidewalls. We find a paradoxical situation that a surface state at all k points in the bandgap cannot be probed by conventional scanning tunneling microscopy, due to a dispersion characterized by a steep min...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-10, Vol.103 (15)
Hauptverfasser: Lymperakis, L., Weidlich, P. H., Eisele, H., Schnedler, M., Nys, J.-P., Grandidier, B., Stiévenard, D., Dunin-Borkowski, R. E., Neugebauer, J., Ebert, Ph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Applied physics letters
container_volume 103
creator Lymperakis, L.
Weidlich, P. H.
Eisele, H.
Schnedler, M.
Nys, J.-P.
Grandidier, B.
Stiévenard, D.
Dunin-Borkowski, R. E.
Neugebauer, J.
Ebert, Ph
description We investigate the electronic structure of the GaN(101¯0) prototype surface for GaN nanowire sidewalls. We find a paradoxical situation that a surface state at all k points in the bandgap cannot be probed by conventional scanning tunneling microscopy, due to a dispersion characterized by a steep minimum with low density of states (DOS) and an extremely flat maximum with high DOS. Based on an analysis of the decay behavior into the vacuum, we identify experimentally the surface state minimum 0.6 ± 0.2 eV below the bulk conduction band in the gap. Hence, GaN nanowires with clean (101¯0) sidewall facets are intrinsically pinned.
doi_str_mv 10.1063/1.4823723
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00877636v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464597698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3123-b0652f988bb043bbf1ce532ff24211a731f9753ae84dc514c2b236a031ad07cc3</originalsourceid><addsrcrecordid>eNpFkEFOwzAURC0EEqWw4AZetosUf__ETthVCNpKFWzo2nJcG4xSJ9gpiFNxB05Gq1awGs3o6S2GkGtgE2ACb2CSlxwlxxMyACZlhgDlKRkwxjATVQHn5CKlt10tOOKArOZ-vbaBpm102liaet3bRHVPQxuyrm10pDP9SEfA4Od7TPdQn27pIvTRh-QN7XwIPrzQ1tGgQ_vpo02X5MzpJtmrYw7J6uH--W6eLZ9mi7vpMjMIHLOaiYK7qizrmuVY1w6MLZA7x3MOoCWCq2SB2pb52hSQG15zFJoh6DWTxuCQjA_eV92oLvqNjl-q1V7Np0u13xgrpRQoPmDHjg5sF9v3rU292vhkbNPoYNttUpCLvKikqMp_rYltStG6Pzcwtb9ZgTrejL9VUWzJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464597698</pqid></control><display><type>article</type><title>Hidden surface states at non-polar GaN (101¯) facets: Intrinsic pinning of nanowires</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Lymperakis, L. ; Weidlich, P. H. ; Eisele, H. ; Schnedler, M. ; Nys, J.-P. ; Grandidier, B. ; Stiévenard, D. ; Dunin-Borkowski, R. E. ; Neugebauer, J. ; Ebert, Ph</creator><creatorcontrib>Lymperakis, L. ; Weidlich, P. H. ; Eisele, H. ; Schnedler, M. ; Nys, J.-P. ; Grandidier, B. ; Stiévenard, D. ; Dunin-Borkowski, R. E. ; Neugebauer, J. ; Ebert, Ph</creatorcontrib><description>We investigate the electronic structure of the GaN(101¯0) prototype surface for GaN nanowire sidewalls. We find a paradoxical situation that a surface state at all k points in the bandgap cannot be probed by conventional scanning tunneling microscopy, due to a dispersion characterized by a steep minimum with low density of states (DOS) and an extremely flat maximum with high DOS. Based on an analysis of the decay behavior into the vacuum, we identify experimentally the surface state minimum 0.6 ± 0.2 eV below the bulk conduction band in the gap. Hence, GaN nanowires with clean (101¯0) sidewall facets are intrinsically pinned.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4823723</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>Cleaning ; Decay ; Density of states ; Dispersions ; Engineering Sciences ; Gallium nitrides ; Nanowires ; Pinning ; Scanning tunneling microscopy</subject><ispartof>Applied physics letters, 2013-10, Vol.103 (15)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3123-b0652f988bb043bbf1ce532ff24211a731f9753ae84dc514c2b236a031ad07cc3</citedby><cites>FETCH-LOGICAL-c3123-b0652f988bb043bbf1ce532ff24211a731f9753ae84dc514c2b236a031ad07cc3</cites><orcidid>0000-0001-6131-7309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00877636$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lymperakis, L.</creatorcontrib><creatorcontrib>Weidlich, P. H.</creatorcontrib><creatorcontrib>Eisele, H.</creatorcontrib><creatorcontrib>Schnedler, M.</creatorcontrib><creatorcontrib>Nys, J.-P.</creatorcontrib><creatorcontrib>Grandidier, B.</creatorcontrib><creatorcontrib>Stiévenard, D.</creatorcontrib><creatorcontrib>Dunin-Borkowski, R. E.</creatorcontrib><creatorcontrib>Neugebauer, J.</creatorcontrib><creatorcontrib>Ebert, Ph</creatorcontrib><title>Hidden surface states at non-polar GaN (101¯) facets: Intrinsic pinning of nanowires</title><title>Applied physics letters</title><description>We investigate the electronic structure of the GaN(101¯0) prototype surface for GaN nanowire sidewalls. We find a paradoxical situation that a surface state at all k points in the bandgap cannot be probed by conventional scanning tunneling microscopy, due to a dispersion characterized by a steep minimum with low density of states (DOS) and an extremely flat maximum with high DOS. Based on an analysis of the decay behavior into the vacuum, we identify experimentally the surface state minimum 0.6 ± 0.2 eV below the bulk conduction band in the gap. Hence, GaN nanowires with clean (101¯0) sidewall facets are intrinsically pinned.</description><subject>Cleaning</subject><subject>Decay</subject><subject>Density of states</subject><subject>Dispersions</subject><subject>Engineering Sciences</subject><subject>Gallium nitrides</subject><subject>Nanowires</subject><subject>Pinning</subject><subject>Scanning tunneling microscopy</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkEFOwzAURC0EEqWw4AZetosUf__ETthVCNpKFWzo2nJcG4xSJ9gpiFNxB05Gq1awGs3o6S2GkGtgE2ACb2CSlxwlxxMyACZlhgDlKRkwxjATVQHn5CKlt10tOOKArOZ-vbaBpm102liaet3bRHVPQxuyrm10pDP9SEfA4Od7TPdQn27pIvTRh-QN7XwIPrzQ1tGgQ_vpo02X5MzpJtmrYw7J6uH--W6eLZ9mi7vpMjMIHLOaiYK7qizrmuVY1w6MLZA7x3MOoCWCq2SB2pb52hSQG15zFJoh6DWTxuCQjA_eV92oLvqNjl-q1V7Np0u13xgrpRQoPmDHjg5sF9v3rU292vhkbNPoYNttUpCLvKikqMp_rYltStG6Pzcwtb9ZgTrejL9VUWzJ</recordid><startdate>20131007</startdate><enddate>20131007</enddate><creator>Lymperakis, L.</creator><creator>Weidlich, P. H.</creator><creator>Eisele, H.</creator><creator>Schnedler, M.</creator><creator>Nys, J.-P.</creator><creator>Grandidier, B.</creator><creator>Stiévenard, D.</creator><creator>Dunin-Borkowski, R. E.</creator><creator>Neugebauer, J.</creator><creator>Ebert, Ph</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6131-7309</orcidid></search><sort><creationdate>20131007</creationdate><title>Hidden surface states at non-polar GaN (101¯) facets: Intrinsic pinning of nanowires</title><author>Lymperakis, L. ; Weidlich, P. H. ; Eisele, H. ; Schnedler, M. ; Nys, J.-P. ; Grandidier, B. ; Stiévenard, D. ; Dunin-Borkowski, R. E. ; Neugebauer, J. ; Ebert, Ph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3123-b0652f988bb043bbf1ce532ff24211a731f9753ae84dc514c2b236a031ad07cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cleaning</topic><topic>Decay</topic><topic>Density of states</topic><topic>Dispersions</topic><topic>Engineering Sciences</topic><topic>Gallium nitrides</topic><topic>Nanowires</topic><topic>Pinning</topic><topic>Scanning tunneling microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lymperakis, L.</creatorcontrib><creatorcontrib>Weidlich, P. H.</creatorcontrib><creatorcontrib>Eisele, H.</creatorcontrib><creatorcontrib>Schnedler, M.</creatorcontrib><creatorcontrib>Nys, J.-P.</creatorcontrib><creatorcontrib>Grandidier, B.</creatorcontrib><creatorcontrib>Stiévenard, D.</creatorcontrib><creatorcontrib>Dunin-Borkowski, R. E.</creatorcontrib><creatorcontrib>Neugebauer, J.</creatorcontrib><creatorcontrib>Ebert, Ph</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lymperakis, L.</au><au>Weidlich, P. H.</au><au>Eisele, H.</au><au>Schnedler, M.</au><au>Nys, J.-P.</au><au>Grandidier, B.</au><au>Stiévenard, D.</au><au>Dunin-Borkowski, R. E.</au><au>Neugebauer, J.</au><au>Ebert, Ph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden surface states at non-polar GaN (101¯) facets: Intrinsic pinning of nanowires</atitle><jtitle>Applied physics letters</jtitle><date>2013-10-07</date><risdate>2013</risdate><volume>103</volume><issue>15</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We investigate the electronic structure of the GaN(101¯0) prototype surface for GaN nanowire sidewalls. We find a paradoxical situation that a surface state at all k points in the bandgap cannot be probed by conventional scanning tunneling microscopy, due to a dispersion characterized by a steep minimum with low density of states (DOS) and an extremely flat maximum with high DOS. Based on an analysis of the decay behavior into the vacuum, we identify experimentally the surface state minimum 0.6 ± 0.2 eV below the bulk conduction band in the gap. Hence, GaN nanowires with clean (101¯0) sidewall facets are intrinsically pinned.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.4823723</doi><orcidid>https://orcid.org/0000-0001-6131-7309</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2013-10, Vol.103 (15)
issn 0003-6951
1077-3118
language eng
recordid cdi_hal_primary_oai_HAL_hal_00877636v1
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Cleaning
Decay
Density of states
Dispersions
Engineering Sciences
Gallium nitrides
Nanowires
Pinning
Scanning tunneling microscopy
title Hidden surface states at non-polar GaN (101¯) facets: Intrinsic pinning of nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20surface%20states%20at%20non-polar%20GaN%20(101%C2%AF)%20facets:%20Intrinsic%20pinning%20of%20nanowires&rft.jtitle=Applied%20physics%20letters&rft.au=Lymperakis,%20L.&rft.date=2013-10-07&rft.volume=103&rft.issue=15&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4823723&rft_dat=%3Cproquest_hal_p%3E1464597698%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464597698&rft_id=info:pmid/&rfr_iscdi=true