Hidden surface states at non-polar GaN (101¯) facets: Intrinsic pinning of nanowires
We investigate the electronic structure of the GaN(101¯0) prototype surface for GaN nanowire sidewalls. We find a paradoxical situation that a surface state at all k points in the bandgap cannot be probed by conventional scanning tunneling microscopy, due to a dispersion characterized by a steep min...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2013-10, Vol.103 (15) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 103 |
creator | Lymperakis, L. Weidlich, P. H. Eisele, H. Schnedler, M. Nys, J.-P. Grandidier, B. Stiévenard, D. Dunin-Borkowski, R. E. Neugebauer, J. Ebert, Ph |
description | We investigate the electronic structure of the GaN(101¯0) prototype surface for GaN nanowire sidewalls. We find a paradoxical situation that a surface state at all k points in the bandgap cannot be probed by conventional scanning tunneling microscopy, due to a dispersion characterized by a steep minimum with low density of states (DOS) and an extremely flat maximum with high DOS. Based on an analysis of the decay behavior into the vacuum, we identify experimentally the surface state minimum 0.6 ± 0.2 eV below the bulk conduction band in the gap. Hence, GaN nanowires with clean (101¯0) sidewall facets are intrinsically pinned. |
doi_str_mv | 10.1063/1.4823723 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00877636v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464597698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3123-b0652f988bb043bbf1ce532ff24211a731f9753ae84dc514c2b236a031ad07cc3</originalsourceid><addsrcrecordid>eNpFkEFOwzAURC0EEqWw4AZetosUf__ETthVCNpKFWzo2nJcG4xSJ9gpiFNxB05Gq1awGs3o6S2GkGtgE2ACb2CSlxwlxxMyACZlhgDlKRkwxjATVQHn5CKlt10tOOKArOZ-vbaBpm102liaet3bRHVPQxuyrm10pDP9SEfA4Od7TPdQn27pIvTRh-QN7XwIPrzQ1tGgQ_vpo02X5MzpJtmrYw7J6uH--W6eLZ9mi7vpMjMIHLOaiYK7qizrmuVY1w6MLZA7x3MOoCWCq2SB2pb52hSQG15zFJoh6DWTxuCQjA_eV92oLvqNjl-q1V7Np0u13xgrpRQoPmDHjg5sF9v3rU292vhkbNPoYNttUpCLvKikqMp_rYltStG6Pzcwtb9ZgTrejL9VUWzJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464597698</pqid></control><display><type>article</type><title>Hidden surface states at non-polar GaN (101¯) facets: Intrinsic pinning of nanowires</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Lymperakis, L. ; Weidlich, P. H. ; Eisele, H. ; Schnedler, M. ; Nys, J.-P. ; Grandidier, B. ; Stiévenard, D. ; Dunin-Borkowski, R. E. ; Neugebauer, J. ; Ebert, Ph</creator><creatorcontrib>Lymperakis, L. ; Weidlich, P. H. ; Eisele, H. ; Schnedler, M. ; Nys, J.-P. ; Grandidier, B. ; Stiévenard, D. ; Dunin-Borkowski, R. E. ; Neugebauer, J. ; Ebert, Ph</creatorcontrib><description>We investigate the electronic structure of the GaN(101¯0) prototype surface for GaN nanowire sidewalls. We find a paradoxical situation that a surface state at all k points in the bandgap cannot be probed by conventional scanning tunneling microscopy, due to a dispersion characterized by a steep minimum with low density of states (DOS) and an extremely flat maximum with high DOS. Based on an analysis of the decay behavior into the vacuum, we identify experimentally the surface state minimum 0.6 ± 0.2 eV below the bulk conduction band in the gap. Hence, GaN nanowires with clean (101¯0) sidewall facets are intrinsically pinned.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4823723</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>Cleaning ; Decay ; Density of states ; Dispersions ; Engineering Sciences ; Gallium nitrides ; Nanowires ; Pinning ; Scanning tunneling microscopy</subject><ispartof>Applied physics letters, 2013-10, Vol.103 (15)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3123-b0652f988bb043bbf1ce532ff24211a731f9753ae84dc514c2b236a031ad07cc3</citedby><cites>FETCH-LOGICAL-c3123-b0652f988bb043bbf1ce532ff24211a731f9753ae84dc514c2b236a031ad07cc3</cites><orcidid>0000-0001-6131-7309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00877636$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lymperakis, L.</creatorcontrib><creatorcontrib>Weidlich, P. H.</creatorcontrib><creatorcontrib>Eisele, H.</creatorcontrib><creatorcontrib>Schnedler, M.</creatorcontrib><creatorcontrib>Nys, J.-P.</creatorcontrib><creatorcontrib>Grandidier, B.</creatorcontrib><creatorcontrib>Stiévenard, D.</creatorcontrib><creatorcontrib>Dunin-Borkowski, R. E.</creatorcontrib><creatorcontrib>Neugebauer, J.</creatorcontrib><creatorcontrib>Ebert, Ph</creatorcontrib><title>Hidden surface states at non-polar GaN (101¯) facets: Intrinsic pinning of nanowires</title><title>Applied physics letters</title><description>We investigate the electronic structure of the GaN(101¯0) prototype surface for GaN nanowire sidewalls. We find a paradoxical situation that a surface state at all k points in the bandgap cannot be probed by conventional scanning tunneling microscopy, due to a dispersion characterized by a steep minimum with low density of states (DOS) and an extremely flat maximum with high DOS. Based on an analysis of the decay behavior into the vacuum, we identify experimentally the surface state minimum 0.6 ± 0.2 eV below the bulk conduction band in the gap. Hence, GaN nanowires with clean (101¯0) sidewall facets are intrinsically pinned.</description><subject>Cleaning</subject><subject>Decay</subject><subject>Density of states</subject><subject>Dispersions</subject><subject>Engineering Sciences</subject><subject>Gallium nitrides</subject><subject>Nanowires</subject><subject>Pinning</subject><subject>Scanning tunneling microscopy</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkEFOwzAURC0EEqWw4AZetosUf__ETthVCNpKFWzo2nJcG4xSJ9gpiFNxB05Gq1awGs3o6S2GkGtgE2ACb2CSlxwlxxMyACZlhgDlKRkwxjATVQHn5CKlt10tOOKArOZ-vbaBpm102liaet3bRHVPQxuyrm10pDP9SEfA4Od7TPdQn27pIvTRh-QN7XwIPrzQ1tGgQ_vpo02X5MzpJtmrYw7J6uH--W6eLZ9mi7vpMjMIHLOaiYK7qizrmuVY1w6MLZA7x3MOoCWCq2SB2pb52hSQG15zFJoh6DWTxuCQjA_eV92oLvqNjl-q1V7Np0u13xgrpRQoPmDHjg5sF9v3rU292vhkbNPoYNttUpCLvKikqMp_rYltStG6Pzcwtb9ZgTrejL9VUWzJ</recordid><startdate>20131007</startdate><enddate>20131007</enddate><creator>Lymperakis, L.</creator><creator>Weidlich, P. H.</creator><creator>Eisele, H.</creator><creator>Schnedler, M.</creator><creator>Nys, J.-P.</creator><creator>Grandidier, B.</creator><creator>Stiévenard, D.</creator><creator>Dunin-Borkowski, R. E.</creator><creator>Neugebauer, J.</creator><creator>Ebert, Ph</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6131-7309</orcidid></search><sort><creationdate>20131007</creationdate><title>Hidden surface states at non-polar GaN (101¯) facets: Intrinsic pinning of nanowires</title><author>Lymperakis, L. ; Weidlich, P. H. ; Eisele, H. ; Schnedler, M. ; Nys, J.-P. ; Grandidier, B. ; Stiévenard, D. ; Dunin-Borkowski, R. E. ; Neugebauer, J. ; Ebert, Ph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3123-b0652f988bb043bbf1ce532ff24211a731f9753ae84dc514c2b236a031ad07cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cleaning</topic><topic>Decay</topic><topic>Density of states</topic><topic>Dispersions</topic><topic>Engineering Sciences</topic><topic>Gallium nitrides</topic><topic>Nanowires</topic><topic>Pinning</topic><topic>Scanning tunneling microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lymperakis, L.</creatorcontrib><creatorcontrib>Weidlich, P. H.</creatorcontrib><creatorcontrib>Eisele, H.</creatorcontrib><creatorcontrib>Schnedler, M.</creatorcontrib><creatorcontrib>Nys, J.-P.</creatorcontrib><creatorcontrib>Grandidier, B.</creatorcontrib><creatorcontrib>Stiévenard, D.</creatorcontrib><creatorcontrib>Dunin-Borkowski, R. E.</creatorcontrib><creatorcontrib>Neugebauer, J.</creatorcontrib><creatorcontrib>Ebert, Ph</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lymperakis, L.</au><au>Weidlich, P. H.</au><au>Eisele, H.</au><au>Schnedler, M.</au><au>Nys, J.-P.</au><au>Grandidier, B.</au><au>Stiévenard, D.</au><au>Dunin-Borkowski, R. E.</au><au>Neugebauer, J.</au><au>Ebert, Ph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden surface states at non-polar GaN (101¯) facets: Intrinsic pinning of nanowires</atitle><jtitle>Applied physics letters</jtitle><date>2013-10-07</date><risdate>2013</risdate><volume>103</volume><issue>15</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We investigate the electronic structure of the GaN(101¯0) prototype surface for GaN nanowire sidewalls. We find a paradoxical situation that a surface state at all k points in the bandgap cannot be probed by conventional scanning tunneling microscopy, due to a dispersion characterized by a steep minimum with low density of states (DOS) and an extremely flat maximum with high DOS. Based on an analysis of the decay behavior into the vacuum, we identify experimentally the surface state minimum 0.6 ± 0.2 eV below the bulk conduction band in the gap. Hence, GaN nanowires with clean (101¯0) sidewall facets are intrinsically pinned.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.4823723</doi><orcidid>https://orcid.org/0000-0001-6131-7309</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2013-10, Vol.103 (15) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00877636v1 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Cleaning Decay Density of states Dispersions Engineering Sciences Gallium nitrides Nanowires Pinning Scanning tunneling microscopy |
title | Hidden surface states at non-polar GaN (101¯) facets: Intrinsic pinning of nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20surface%20states%20at%20non-polar%20GaN%20(101%C2%AF)%20facets:%20Intrinsic%20pinning%20of%20nanowires&rft.jtitle=Applied%20physics%20letters&rft.au=Lymperakis,%20L.&rft.date=2013-10-07&rft.volume=103&rft.issue=15&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4823723&rft_dat=%3Cproquest_hal_p%3E1464597698%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464597698&rft_id=info:pmid/&rfr_iscdi=true |