On Derivative Criteria for Metric Regularity
We give a simple self-contained proof of the equality which links directly the graphical derivative and coderivative criteria for metric regularity. Then we present a sharper form of the criterion for strong metric regularity involving the paratingent derivative.
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 374 |
---|---|
container_issue | |
container_start_page | 365 |
container_title | |
container_volume | 50 |
creator | Frankowska, Hélène Dontchev, Asen |
description | We give a simple self-contained proof of the equality which links directly the graphical derivative and coderivative criteria for metric regularity. Then we present a sharper form of the criterion for strong metric regularity involving the paratingent derivative. |
doi_str_mv | 10.1007/978-1-4614-7621-4_16 |
format | Book Chapter |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00877145v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>CX6653100024</galeid><sourcerecordid>CX6653100024</sourcerecordid><originalsourceid>FETCH-LOGICAL-g296t-60f72d64a5c8f12ba76a62d2ad106eab143d862b352b54ede43df3cd1516f8d23</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhM1TFOgfQBxyRSKw6zhr51iVp1RUCcF55SROCYSmOKFS_z2OCpzsnZlvVxohzhGuEEBfZ9rEGCtCFWuS4cdIO-IYB2UQaFeMJGYqRkC9J8Yh_-eB3v_3IDsUI0MIBkyWHYlx170DQIBAGTMSl_NldON8vbZ9vXbR1Nd9mGxUtT56cr2vi-jZLb4bG4zNqTiobNO58e97Il7vbl-mD_Fsfv84nczihcyojwkqLUtSNi1MhTK3mizJUtoSgZzNUSWlIZknqcxT5UoX5iopSkyRKlPK5ERcbPe-2YZXvv60fsOtrflhMuNBAzBao0rXGLJym-1CcLlwnvO2_egYgYceOfTCyEMzPNTGQ48BUlto5duvb9f17AaqcMve26Z4s6vQQtihiDQE3khOtAnY2RZb2Mbx2jdMlCbhDEiV_ACU-naP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC1466708_182_378</pqid></control><display><type>book_chapter</type><title>On Derivative Criteria for Metric Regularity</title><source>Springer Books</source><creator>Frankowska, Hélène ; Dontchev, Asen</creator><contributor>Vanderwerff, Jon D ; Garvan, Frank ; Bailey, David H ; Borwein, Peter ; Wolkowicz, Henry ; Théra, Michel ; Bauschke, Heinz H ; Bauschke, Heinz H. ; Wolkowicz, Henry ; Bailey, David H. ; Théra, Michel ; Vanderwerff, Jon D. ; Garvan, Frank ; Borwein, Peter</contributor><creatorcontrib>Frankowska, Hélène ; Dontchev, Asen ; Vanderwerff, Jon D ; Garvan, Frank ; Bailey, David H ; Borwein, Peter ; Wolkowicz, Henry ; Théra, Michel ; Bauschke, Heinz H ; Bauschke, Heinz H. ; Wolkowicz, Henry ; Bailey, David H. ; Théra, Michel ; Vanderwerff, Jon D. ; Garvan, Frank ; Borwein, Peter</creatorcontrib><description>We give a simple self-contained proof of the equality which links directly the graphical derivative and coderivative criteria for metric regularity. Then we present a sharper form of the criterion for strong metric regularity involving the paratingent derivative.</description><identifier>ISSN: 2194-1009</identifier><identifier>ISBN: 9781461476207</identifier><identifier>ISBN: 1461476208</identifier><identifier>ISBN: 1461476216</identifier><identifier>ISBN: 9781461476214</identifier><identifier>EISSN: 2194-1017</identifier><identifier>EISBN: 1461476216</identifier><identifier>EISBN: 9781461476214</identifier><identifier>DOI: 10.1007/978-1-4614-7621-4_16</identifier><identifier>OCLC: 861080899</identifier><identifier>LCCallNum: QA241-247.5</identifier><language>eng</language><publisher>United States: Springer New York</publisher><subject>Coderivative ; Functional analysis & transforms ; Graphical derivative ; Mathematics ; Metric regularity ; Number theory ; Operational research ; Optimization and Control ; Paratingent derivative ; Primary 49J52 ; Secondary 49J53 ; Set-valued mapping ; Strong metric regularity</subject><ispartof>Computational and Analytical Mathematics, 2013, Vol.50, p.365-374</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Springer Proceedings in Mathematics & Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/1466708-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-1-4614-7621-4_16$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-1-4614-7621-4_16$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>127,146,230,775,776,780,789,881,25331,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00877145$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Vanderwerff, Jon D</contributor><contributor>Garvan, Frank</contributor><contributor>Bailey, David H</contributor><contributor>Borwein, Peter</contributor><contributor>Wolkowicz, Henry</contributor><contributor>Théra, Michel</contributor><contributor>Bauschke, Heinz H</contributor><contributor>Bauschke, Heinz H.</contributor><contributor>Wolkowicz, Henry</contributor><contributor>Bailey, David H.</contributor><contributor>Théra, Michel</contributor><contributor>Vanderwerff, Jon D.</contributor><contributor>Garvan, Frank</contributor><contributor>Borwein, Peter</contributor><creatorcontrib>Frankowska, Hélène</creatorcontrib><creatorcontrib>Dontchev, Asen</creatorcontrib><title>On Derivative Criteria for Metric Regularity</title><title>Computational and Analytical Mathematics</title><description>We give a simple self-contained proof of the equality which links directly the graphical derivative and coderivative criteria for metric regularity. Then we present a sharper form of the criterion for strong metric regularity involving the paratingent derivative.</description><subject>Coderivative</subject><subject>Functional analysis & transforms</subject><subject>Graphical derivative</subject><subject>Mathematics</subject><subject>Metric regularity</subject><subject>Number theory</subject><subject>Operational research</subject><subject>Optimization and Control</subject><subject>Paratingent derivative</subject><subject>Primary 49J52</subject><subject>Secondary 49J53</subject><subject>Set-valued mapping</subject><subject>Strong metric regularity</subject><issn>2194-1009</issn><issn>2194-1017</issn><isbn>9781461476207</isbn><isbn>1461476208</isbn><isbn>1461476216</isbn><isbn>9781461476214</isbn><isbn>1461476216</isbn><isbn>9781461476214</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2013</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kEtPwzAQhM1TFOgfQBxyRSKw6zhr51iVp1RUCcF55SROCYSmOKFS_z2OCpzsnZlvVxohzhGuEEBfZ9rEGCtCFWuS4cdIO-IYB2UQaFeMJGYqRkC9J8Yh_-eB3v_3IDsUI0MIBkyWHYlx170DQIBAGTMSl_NldON8vbZ9vXbR1Nd9mGxUtT56cr2vi-jZLb4bG4zNqTiobNO58e97Il7vbl-mD_Fsfv84nczihcyojwkqLUtSNi1MhTK3mizJUtoSgZzNUSWlIZknqcxT5UoX5iopSkyRKlPK5ERcbPe-2YZXvv60fsOtrflhMuNBAzBao0rXGLJym-1CcLlwnvO2_egYgYceOfTCyEMzPNTGQ48BUlto5duvb9f17AaqcMve26Z4s6vQQtihiDQE3khOtAnY2RZb2Mbx2jdMlCbhDEiV_ACU-naP</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Frankowska, Hélène</creator><creator>Dontchev, Asen</creator><general>Springer New York</general><general>Springer-Verlag</general><scope>FFUUA</scope><scope>1XC</scope></search><sort><creationdate>2013</creationdate><title>On Derivative Criteria for Metric Regularity</title><author>Frankowska, Hélène ; Dontchev, Asen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g296t-60f72d64a5c8f12ba76a62d2ad106eab143d862b352b54ede43df3cd1516f8d23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Coderivative</topic><topic>Functional analysis & transforms</topic><topic>Graphical derivative</topic><topic>Mathematics</topic><topic>Metric regularity</topic><topic>Number theory</topic><topic>Operational research</topic><topic>Optimization and Control</topic><topic>Paratingent derivative</topic><topic>Primary 49J52</topic><topic>Secondary 49J53</topic><topic>Set-valued mapping</topic><topic>Strong metric regularity</topic><toplevel>online_resources</toplevel><creatorcontrib>Frankowska, Hélène</creatorcontrib><creatorcontrib>Dontchev, Asen</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frankowska, Hélène</au><au>Dontchev, Asen</au><au>Vanderwerff, Jon D</au><au>Garvan, Frank</au><au>Bailey, David H</au><au>Borwein, Peter</au><au>Wolkowicz, Henry</au><au>Théra, Michel</au><au>Bauschke, Heinz H</au><au>Bauschke, Heinz H.</au><au>Wolkowicz, Henry</au><au>Bailey, David H.</au><au>Théra, Michel</au><au>Vanderwerff, Jon D.</au><au>Garvan, Frank</au><au>Borwein, Peter</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>On Derivative Criteria for Metric Regularity</atitle><btitle>Computational and Analytical Mathematics</btitle><seriestitle>Springer Proceedings in Mathematics & Statistics</seriestitle><date>2013</date><risdate>2013</risdate><volume>50</volume><spage>365</spage><epage>374</epage><pages>365-374</pages><issn>2194-1009</issn><eissn>2194-1017</eissn><isbn>9781461476207</isbn><isbn>1461476208</isbn><isbn>1461476216</isbn><isbn>9781461476214</isbn><eisbn>1461476216</eisbn><eisbn>9781461476214</eisbn><abstract>We give a simple self-contained proof of the equality which links directly the graphical derivative and coderivative criteria for metric regularity. Then we present a sharper form of the criterion for strong metric regularity involving the paratingent derivative.</abstract><cop>United States</cop><pub>Springer New York</pub><doi>10.1007/978-1-4614-7621-4_16</doi><oclcid>861080899</oclcid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-1009 |
ispartof | Computational and Analytical Mathematics, 2013, Vol.50, p.365-374 |
issn | 2194-1009 2194-1017 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00877145v1 |
source | Springer Books |
subjects | Coderivative Functional analysis & transforms Graphical derivative Mathematics Metric regularity Number theory Operational research Optimization and Control Paratingent derivative Primary 49J52 Secondary 49J53 Set-valued mapping Strong metric regularity |
title | On Derivative Criteria for Metric Regularity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=On%20Derivative%20Criteria%20for%20Metric%20Regularity&rft.btitle=Computational%20and%20Analytical%20Mathematics&rft.au=Frankowska,%20H%C3%A9l%C3%A8ne&rft.date=2013&rft.volume=50&rft.spage=365&rft.epage=374&rft.pages=365-374&rft.issn=2194-1009&rft.eissn=2194-1017&rft.isbn=9781461476207&rft.isbn_list=1461476208&rft.isbn_list=1461476216&rft.isbn_list=9781461476214&rft_id=info:doi/10.1007/978-1-4614-7621-4_16&rft_dat=%3Cgale_hal_p%3ECX6653100024%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=1461476216&rft.eisbn_list=9781461476214&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC1466708_182_378&rft_id=info:pmid/&rft_galeid=CX6653100024&rfr_iscdi=true |