Ensemble neural network-based particle filtering for prognostics

Particle Filtering (PF) is used in prognostics applications by reason of its capability of robustly predicting the future behavior of an equipment and, on this basis, its Residual Useful Life (RUL). It is a model-driven approach, as it resorts to analytical models of both the degradation process and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2013-12, Vol.41 (1-2), p.288-300
Hauptverfasser: Baraldi, P., Compare, M., Sauco, S., Zio, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 1-2
container_start_page 288
container_title Mechanical systems and signal processing
container_volume 41
creator Baraldi, P.
Compare, M.
Sauco, S.
Zio, E.
description Particle Filtering (PF) is used in prognostics applications by reason of its capability of robustly predicting the future behavior of an equipment and, on this basis, its Residual Useful Life (RUL). It is a model-driven approach, as it resorts to analytical models of both the degradation process and the measurement acquisition system. This prevents its applicability to the cases, very common in industry, in which reliable models are lacking. In this work, we propose an original method to extend PF to the case in which an analytical measurement model is not available whereas, instead, a dataset containing pairs «state-measurement» is available. The dataset is used to train a bagged ensemble of Artificial Neural Networks (ANNs) which is, then, embedded in the PF as empirical measurement model. The novel PF scheme proposed is applied to a case study regarding the prediction of the RUL of a structure, which is degrading according to a stochastic fatigue crack growth model of literature. •This work extends Particle Filtering when the analytical measurement model is not known.•The method to do this, is based on the use of a bagged ensemble of Artificial Neural Networks.•The ensemble provides the measurement distribution, which substitutes the analytical model.•An application to a fatigue crack propagation case study is presented.
doi_str_mv 10.1016/j.ymssp.2013.07.010
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00872747v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327013003609</els_id><sourcerecordid>1567081885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-c2755b587476573b05e1e048163df07dce8a3d2031a744288589a4f4f8ea9d643</originalsourceid><addsrcrecordid>eNqFkTFPwzAQhS0EEqXwC1gywpBwjp3YGZCoUKFIlVhgthznUlzSJNhpUf89LkGMMJ109727p3uEXFJIKND8Zp3sN973SQqUJSASoHBEJhSKPKYpzY_JBKSUMUsFnJIz79cAUHDIJ-Ru3nrclA1GLW6dbkIZPjv3HpfaYxX12g3WhGltmwGdbVdR3bmod92q7XwY-XNyUuvG48VPnZLXh_nL_SJePj8-3c-WseFcDrFJRZaVmRRc5JlgJWRIEbikOatqEJVBqVmVAqNacJ5KmclC85rXEnVR5ZxNyfW49003qnd2o91eddqqxWypDj0AKdKwfkcDezWywefHFv2gNtYbbBrdYrf1ima5AEnDkf9RHnwzWYAMKBtR4zrvHda_NiioQwxqrb5jUIcYFAgVYgiq21GF4Tk7i055Y7E1WFmHZlBVZ__UfwGzy5Aa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475538908</pqid></control><display><type>article</type><title>Ensemble neural network-based particle filtering for prognostics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Baraldi, P. ; Compare, M. ; Sauco, S. ; Zio, E.</creator><creatorcontrib>Baraldi, P. ; Compare, M. ; Sauco, S. ; Zio, E.</creatorcontrib><description>Particle Filtering (PF) is used in prognostics applications by reason of its capability of robustly predicting the future behavior of an equipment and, on this basis, its Residual Useful Life (RUL). It is a model-driven approach, as it resorts to analytical models of both the degradation process and the measurement acquisition system. This prevents its applicability to the cases, very common in industry, in which reliable models are lacking. In this work, we propose an original method to extend PF to the case in which an analytical measurement model is not available whereas, instead, a dataset containing pairs «state-measurement» is available. The dataset is used to train a bagged ensemble of Artificial Neural Networks (ANNs) which is, then, embedded in the PF as empirical measurement model. The novel PF scheme proposed is applied to a case study regarding the prediction of the RUL of a structure, which is degrading according to a stochastic fatigue crack growth model of literature. •This work extends Particle Filtering when the analytical measurement model is not known.•The method to do this, is based on the use of a bagged ensemble of Artificial Neural Networks.•The ensemble provides the measurement distribution, which substitutes the analytical model.•An application to a fatigue crack propagation case study is presented.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2013.07.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Degradation ; Engineering Sciences ; Ensemble of neural networks ; Filtering ; Filtration ; Mathematical analysis ; Mathematical models ; Mechanical systems ; Mechanics ; Neural networks ; Particle Filtering ; Prediction interval ; Prognostics ; Trains</subject><ispartof>Mechanical systems and signal processing, 2013-12, Vol.41 (1-2), p.288-300</ispartof><rights>2013 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-c2755b587476573b05e1e048163df07dce8a3d2031a744288589a4f4f8ea9d643</citedby><cites>FETCH-LOGICAL-c448t-c2755b587476573b05e1e048163df07dce8a3d2031a744288589a4f4f8ea9d643</cites><orcidid>0000-0002-7108-637X ; 0000-0003-1992-7319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2013.07.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://centralesupelec.hal.science/hal-00872747$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baraldi, P.</creatorcontrib><creatorcontrib>Compare, M.</creatorcontrib><creatorcontrib>Sauco, S.</creatorcontrib><creatorcontrib>Zio, E.</creatorcontrib><title>Ensemble neural network-based particle filtering for prognostics</title><title>Mechanical systems and signal processing</title><description>Particle Filtering (PF) is used in prognostics applications by reason of its capability of robustly predicting the future behavior of an equipment and, on this basis, its Residual Useful Life (RUL). It is a model-driven approach, as it resorts to analytical models of both the degradation process and the measurement acquisition system. This prevents its applicability to the cases, very common in industry, in which reliable models are lacking. In this work, we propose an original method to extend PF to the case in which an analytical measurement model is not available whereas, instead, a dataset containing pairs «state-measurement» is available. The dataset is used to train a bagged ensemble of Artificial Neural Networks (ANNs) which is, then, embedded in the PF as empirical measurement model. The novel PF scheme proposed is applied to a case study regarding the prediction of the RUL of a structure, which is degrading according to a stochastic fatigue crack growth model of literature. •This work extends Particle Filtering when the analytical measurement model is not known.•The method to do this, is based on the use of a bagged ensemble of Artificial Neural Networks.•The ensemble provides the measurement distribution, which substitutes the analytical model.•An application to a fatigue crack propagation case study is presented.</description><subject>Degradation</subject><subject>Engineering Sciences</subject><subject>Ensemble of neural networks</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical systems</subject><subject>Mechanics</subject><subject>Neural networks</subject><subject>Particle Filtering</subject><subject>Prediction interval</subject><subject>Prognostics</subject><subject>Trains</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkTFPwzAQhS0EEqXwC1gywpBwjp3YGZCoUKFIlVhgthznUlzSJNhpUf89LkGMMJ109727p3uEXFJIKND8Zp3sN973SQqUJSASoHBEJhSKPKYpzY_JBKSUMUsFnJIz79cAUHDIJ-Ru3nrclA1GLW6dbkIZPjv3HpfaYxX12g3WhGltmwGdbVdR3bmod92q7XwY-XNyUuvG48VPnZLXh_nL_SJePj8-3c-WseFcDrFJRZaVmRRc5JlgJWRIEbikOatqEJVBqVmVAqNacJ5KmclC85rXEnVR5ZxNyfW49003qnd2o91eddqqxWypDj0AKdKwfkcDezWywefHFv2gNtYbbBrdYrf1ima5AEnDkf9RHnwzWYAMKBtR4zrvHda_NiioQwxqrb5jUIcYFAgVYgiq21GF4Tk7i055Y7E1WFmHZlBVZ__UfwGzy5Aa</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Baraldi, P.</creator><creator>Compare, M.</creator><creator>Sauco, S.</creator><creator>Zio, E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7108-637X</orcidid><orcidid>https://orcid.org/0000-0003-1992-7319</orcidid></search><sort><creationdate>201312</creationdate><title>Ensemble neural network-based particle filtering for prognostics</title><author>Baraldi, P. ; Compare, M. ; Sauco, S. ; Zio, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-c2755b587476573b05e1e048163df07dce8a3d2031a744288589a4f4f8ea9d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Degradation</topic><topic>Engineering Sciences</topic><topic>Ensemble of neural networks</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical systems</topic><topic>Mechanics</topic><topic>Neural networks</topic><topic>Particle Filtering</topic><topic>Prediction interval</topic><topic>Prognostics</topic><topic>Trains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baraldi, P.</creatorcontrib><creatorcontrib>Compare, M.</creatorcontrib><creatorcontrib>Sauco, S.</creatorcontrib><creatorcontrib>Zio, E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baraldi, P.</au><au>Compare, M.</au><au>Sauco, S.</au><au>Zio, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble neural network-based particle filtering for prognostics</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2013-12</date><risdate>2013</risdate><volume>41</volume><issue>1-2</issue><spage>288</spage><epage>300</epage><pages>288-300</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>Particle Filtering (PF) is used in prognostics applications by reason of its capability of robustly predicting the future behavior of an equipment and, on this basis, its Residual Useful Life (RUL). It is a model-driven approach, as it resorts to analytical models of both the degradation process and the measurement acquisition system. This prevents its applicability to the cases, very common in industry, in which reliable models are lacking. In this work, we propose an original method to extend PF to the case in which an analytical measurement model is not available whereas, instead, a dataset containing pairs «state-measurement» is available. The dataset is used to train a bagged ensemble of Artificial Neural Networks (ANNs) which is, then, embedded in the PF as empirical measurement model. The novel PF scheme proposed is applied to a case study regarding the prediction of the RUL of a structure, which is degrading according to a stochastic fatigue crack growth model of literature. •This work extends Particle Filtering when the analytical measurement model is not known.•The method to do this, is based on the use of a bagged ensemble of Artificial Neural Networks.•The ensemble provides the measurement distribution, which substitutes the analytical model.•An application to a fatigue crack propagation case study is presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2013.07.010</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7108-637X</orcidid><orcidid>https://orcid.org/0000-0003-1992-7319</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2013-12, Vol.41 (1-2), p.288-300
issn 0888-3270
1096-1216
language eng
recordid cdi_hal_primary_oai_HAL_hal_00872747v1
source Elsevier ScienceDirect Journals Complete
subjects Degradation
Engineering Sciences
Ensemble of neural networks
Filtering
Filtration
Mathematical analysis
Mathematical models
Mechanical systems
Mechanics
Neural networks
Particle Filtering
Prediction interval
Prognostics
Trains
title Ensemble neural network-based particle filtering for prognostics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20neural%20network-based%20particle%20filtering%20for%20prognostics&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Baraldi,%20P.&rft.date=2013-12&rft.volume=41&rft.issue=1-2&rft.spage=288&rft.epage=300&rft.pages=288-300&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2013.07.010&rft_dat=%3Cproquest_hal_p%3E1567081885%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475538908&rft_id=info:pmid/&rft_els_id=S0888327013003609&rfr_iscdi=true