Optimal bit complexity randomised distributed MIS and maximal matching algorithms for anonymous rings
We present and analyse Las Vegas distributed algorithms which compute a MIS or a maximal matching for anonymous rings. Their bit complexity and time complexity are O(logn) with high probability. These algorithms are optimal modulo a multiplicative constant. Beyond the complexity results, the interes...
Gespeichert in:
Veröffentlicht in: | Information and computation 2013-12, Vol.233, p.32-40 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | |
container_start_page | 32 |
container_title | Information and computation |
container_volume | 233 |
creator | Fontaine, A. Métivier, Y. Robson, J.M. Zemmari, A. |
description | We present and analyse Las Vegas distributed algorithms which compute a MIS or a maximal matching for anonymous rings. Their bit complexity and time complexity are O(logn) with high probability. These algorithms are optimal modulo a multiplicative constant. Beyond the complexity results, the interest of this work stands in the description and the analysis of these algorithms which may be easily generalised. Furthermore, these results show a separation between the complexity of the MIS problem (and of the maximal matching problem) on the one hand and the colouring problem on the other. Colouring can be computed only in Ω(logn) rounds on rings with high probability, while MIS is shown to have a faster algorithm. This is in contrast to other models, in which MIS is at least as hard as colouring. |
doi_str_mv | 10.1016/j.ic.2013.10.005 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00871822v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890540113001168</els_id><sourcerecordid>S0890540113001168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-e61b2e070becc8cd68f2959452cc182254ebdf0bc15960e7eddb9a19488cbd553</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwM3plaDincT7YqgooUlEHYLacs9O6SuLKdqv23-NQxMZ0X-9zunsJuWeQMGD54zYxmKTAprFMAPgFGTGoYJLmnF2SEZQx5xmwa3Lj_RaAMZ7lI6JXu2A62dLaBIq227X6aMKJOtkr2xmvFVXGB2fqfYj5-9sHjRPayeMP1cmAG9OvqWzX1pmw6TxtrIsa2586u_fUxam_JVeNbL2--41j8vXy_DlfTJar17f5bDnBaQFhonNWpxoKqDViiSovm7TiVcZTRFamKc90rRqokfEqB11opepKsiorS6wV59MxeTjv3chW7Fw80Z2ElUYsZksx9ADKYth0YFELZy06673TzR_AQAyWiq0wKAZLh060NCJPZ0THHw5GO-HR6B61Mk5jEMqa_-FvQhF_eg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal bit complexity randomised distributed MIS and maximal matching algorithms for anonymous rings</title><source>Elsevier ScienceDirect Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Fontaine, A. ; Métivier, Y. ; Robson, J.M. ; Zemmari, A.</creator><creatorcontrib>Fontaine, A. ; Métivier, Y. ; Robson, J.M. ; Zemmari, A.</creatorcontrib><description>We present and analyse Las Vegas distributed algorithms which compute a MIS or a maximal matching for anonymous rings. Their bit complexity and time complexity are O(logn) with high probability. These algorithms are optimal modulo a multiplicative constant. Beyond the complexity results, the interest of this work stands in the description and the analysis of these algorithms which may be easily generalised. Furthermore, these results show a separation between the complexity of the MIS problem (and of the maximal matching problem) on the one hand and the colouring problem on the other. Colouring can be computed only in Ω(logn) rounds on rings with high probability, while MIS is shown to have a faster algorithm. This is in contrast to other models, in which MIS is at least as hard as colouring.</description><identifier>ISSN: 0890-5401</identifier><identifier>EISSN: 1090-2651</identifier><identifier>DOI: 10.1016/j.ic.2013.10.005</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computer Science ; Distributed, Parallel, and Cluster Computing</subject><ispartof>Information and computation, 2013-12, Vol.233, p.32-40</ispartof><rights>2013 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-e61b2e070becc8cd68f2959452cc182254ebdf0bc15960e7eddb9a19488cbd553</citedby><cites>FETCH-LOGICAL-c370t-e61b2e070becc8cd68f2959452cc182254ebdf0bc15960e7eddb9a19488cbd553</cites><orcidid>0009-0006-8926-5153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0890540113001168$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00871822$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fontaine, A.</creatorcontrib><creatorcontrib>Métivier, Y.</creatorcontrib><creatorcontrib>Robson, J.M.</creatorcontrib><creatorcontrib>Zemmari, A.</creatorcontrib><title>Optimal bit complexity randomised distributed MIS and maximal matching algorithms for anonymous rings</title><title>Information and computation</title><description>We present and analyse Las Vegas distributed algorithms which compute a MIS or a maximal matching for anonymous rings. Their bit complexity and time complexity are O(logn) with high probability. These algorithms are optimal modulo a multiplicative constant. Beyond the complexity results, the interest of this work stands in the description and the analysis of these algorithms which may be easily generalised. Furthermore, these results show a separation between the complexity of the MIS problem (and of the maximal matching problem) on the one hand and the colouring problem on the other. Colouring can be computed only in Ω(logn) rounds on rings with high probability, while MIS is shown to have a faster algorithm. This is in contrast to other models, in which MIS is at least as hard as colouring.</description><subject>Computer Science</subject><subject>Distributed, Parallel, and Cluster Computing</subject><issn>0890-5401</issn><issn>1090-2651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwM3plaDincT7YqgooUlEHYLacs9O6SuLKdqv23-NQxMZ0X-9zunsJuWeQMGD54zYxmKTAprFMAPgFGTGoYJLmnF2SEZQx5xmwa3Lj_RaAMZ7lI6JXu2A62dLaBIq227X6aMKJOtkr2xmvFVXGB2fqfYj5-9sHjRPayeMP1cmAG9OvqWzX1pmw6TxtrIsa2586u_fUxam_JVeNbL2--41j8vXy_DlfTJar17f5bDnBaQFhonNWpxoKqDViiSovm7TiVcZTRFamKc90rRqokfEqB11opepKsiorS6wV59MxeTjv3chW7Fw80Z2ElUYsZksx9ADKYth0YFELZy06673TzR_AQAyWiq0wKAZLh060NCJPZ0THHw5GO-HR6B61Mk5jEMqa_-FvQhF_eg</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Fontaine, A.</creator><creator>Métivier, Y.</creator><creator>Robson, J.M.</creator><creator>Zemmari, A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0006-8926-5153</orcidid></search><sort><creationdate>20131201</creationdate><title>Optimal bit complexity randomised distributed MIS and maximal matching algorithms for anonymous rings</title><author>Fontaine, A. ; Métivier, Y. ; Robson, J.M. ; Zemmari, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-e61b2e070becc8cd68f2959452cc182254ebdf0bc15960e7eddb9a19488cbd553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer Science</topic><topic>Distributed, Parallel, and Cluster Computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fontaine, A.</creatorcontrib><creatorcontrib>Métivier, Y.</creatorcontrib><creatorcontrib>Robson, J.M.</creatorcontrib><creatorcontrib>Zemmari, A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Information and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fontaine, A.</au><au>Métivier, Y.</au><au>Robson, J.M.</au><au>Zemmari, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal bit complexity randomised distributed MIS and maximal matching algorithms for anonymous rings</atitle><jtitle>Information and computation</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>233</volume><spage>32</spage><epage>40</epage><pages>32-40</pages><issn>0890-5401</issn><eissn>1090-2651</eissn><abstract>We present and analyse Las Vegas distributed algorithms which compute a MIS or a maximal matching for anonymous rings. Their bit complexity and time complexity are O(logn) with high probability. These algorithms are optimal modulo a multiplicative constant. Beyond the complexity results, the interest of this work stands in the description and the analysis of these algorithms which may be easily generalised. Furthermore, these results show a separation between the complexity of the MIS problem (and of the maximal matching problem) on the one hand and the colouring problem on the other. Colouring can be computed only in Ω(logn) rounds on rings with high probability, while MIS is shown to have a faster algorithm. This is in contrast to other models, in which MIS is at least as hard as colouring.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ic.2013.10.005</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0006-8926-5153</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-5401 |
ispartof | Information and computation, 2013-12, Vol.233, p.32-40 |
issn | 0890-5401 1090-2651 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00871822v1 |
source | Elsevier ScienceDirect Journals; Free E-Journal (出版社公開部分のみ) |
subjects | Computer Science Distributed, Parallel, and Cluster Computing |
title | Optimal bit complexity randomised distributed MIS and maximal matching algorithms for anonymous rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20bit%20complexity%20randomised%20distributed%20MIS%20and%20maximal%20matching%20algorithms%20for%20anonymous%20rings&rft.jtitle=Information%20and%20computation&rft.au=Fontaine,%20A.&rft.date=2013-12-01&rft.volume=233&rft.spage=32&rft.epage=40&rft.pages=32-40&rft.issn=0890-5401&rft.eissn=1090-2651&rft_id=info:doi/10.1016/j.ic.2013.10.005&rft_dat=%3Celsevier_hal_p%3ES0890540113001168%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0890540113001168&rfr_iscdi=true |