On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes

This paper presents an analysis of Godunov scheme in the low Mach number regime. We study the Riemann problem and show that the interface pressure contains acoustic waves of order O(M *) where M * is the reference Mach number even if the initial data are well-prepared and contain only pressure fluct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2004-05, Vol.33 (4), p.655-675
Hauptverfasser: Guillard, Hervé, Murrone, Angelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 675
container_issue 4
container_start_page 655
container_title Computers & fluids
container_volume 33
creator Guillard, Hervé
Murrone, Angelo
description This paper presents an analysis of Godunov scheme in the low Mach number regime. We study the Riemann problem and show that the interface pressure contains acoustic waves of order O(M *) where M * is the reference Mach number even if the initial data are well-prepared and contain only pressure fluctuations of order O(M * 2) . We then propose to modify the fluxes computed by Godunov type schemes by solving a preconditioned Riemann problem instead of the original one. We show that this strategy allows to recover a correct scaling of the pressure fluctuations. Numerical experiments confirm these theoretical results.
doi_str_mv 10.1016/j.compfluid.2003.07.001
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00871719v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793003000781</els_id><sourcerecordid>28266569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-68fce21a752c7a6de0b27608e546f64c330f8978b4b61ab75b939208903629b83</originalsourceid><addsrcrecordid>eNqFkE1r3DAQQEVpoNukv6G6tNCDnZE_9NHbEppkYUMuLfQmZHmMtdiWK9kb8u9r4yQ99iRGvJkHj5DPDFIGjF-fUuv7selmV6cZQJ6CSAHYO7JjUqgERCHekx1AUSZC5fCBfIzxBMucZ8WO_H4c6NQirbA1Z-cD9Q2dxyc31DTaFnuM1G1E55_og7EtHea-wkA717vpOz0cUnrn63nwZzo9j_i6dkUuGtNF_PTyXpJftz9-3twnx8e7w83-mNiiFFPCZWMxY0aUmRWG1whVJjhILAve8MLmOTRSCVkVFWemEmWlcpWBVJDzTFUyvyTftrut6fQYXG_Cs_bG6fv9Ua9_AFIwwdSZLezXjR2D_zNjnHTvosWuMwP6OepMZpyXXC2g2EAbfIwBm7fLDPRaXZ_0W3W9VtcgFtOq-PKiMNGarglmsC7-Wy9LWLqvhv3G4dLm7DDoaB0OFmsX0E669u6_rr8SOJor</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28266569</pqid></control><display><type>article</type><title>On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes</title><source>Elsevier ScienceDirect Journals</source><creator>Guillard, Hervé ; Murrone, Angelo</creator><creatorcontrib>Guillard, Hervé ; Murrone, Angelo</creatorcontrib><description>This paper presents an analysis of Godunov scheme in the low Mach number regime. We study the Riemann problem and show that the interface pressure contains acoustic waves of order O(M *) where M * is the reference Mach number even if the initial data are well-prepared and contain only pressure fluctuations of order O(M * 2) . We then propose to modify the fluxes computed by Godunov type schemes by solving a preconditioned Riemann problem instead of the original one. We show that this strategy allows to recover a correct scaling of the pressure fluctuations. Numerical experiments confirm these theoretical results.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2003.07.001</identifier><identifier>CODEN: CPFLBI</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Compressible flows; shock and detonation phenomena ; Computational methods in fluid dynamics ; Computational Physics ; Engineering Sciences ; Exact sciences and technology ; Fluid dynamics ; Fluid mechanics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; General subsonic flows ; Mathematical Physics ; Mathematics ; Mechanics ; Numerical Analysis ; Physics</subject><ispartof>Computers &amp; fluids, 2004-05, Vol.33 (4), p.655-675</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-68fce21a752c7a6de0b27608e546f64c330f8978b4b61ab75b939208903629b83</citedby><cites>FETCH-LOGICAL-c457t-68fce21a752c7a6de0b27608e546f64c330f8978b4b61ab75b939208903629b83</cites><orcidid>0000-0003-3099-4408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045793003000781$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15503249$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00871719$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guillard, Hervé</creatorcontrib><creatorcontrib>Murrone, Angelo</creatorcontrib><title>On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes</title><title>Computers &amp; fluids</title><description>This paper presents an analysis of Godunov scheme in the low Mach number regime. We study the Riemann problem and show that the interface pressure contains acoustic waves of order O(M *) where M * is the reference Mach number even if the initial data are well-prepared and contain only pressure fluctuations of order O(M * 2) . We then propose to modify the fluxes computed by Godunov type schemes by solving a preconditioned Riemann problem instead of the original one. We show that this strategy allows to recover a correct scaling of the pressure fluctuations. Numerical experiments confirm these theoretical results.</description><subject>Compressible flows; shock and detonation phenomena</subject><subject>Computational methods in fluid dynamics</subject><subject>Computational Physics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General subsonic flows</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Numerical Analysis</subject><subject>Physics</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQQEVpoNukv6G6tNCDnZE_9NHbEppkYUMuLfQmZHmMtdiWK9kb8u9r4yQ99iRGvJkHj5DPDFIGjF-fUuv7selmV6cZQJ6CSAHYO7JjUqgERCHekx1AUSZC5fCBfIzxBMucZ8WO_H4c6NQirbA1Z-cD9Q2dxyc31DTaFnuM1G1E55_og7EtHea-wkA717vpOz0cUnrn63nwZzo9j_i6dkUuGtNF_PTyXpJftz9-3twnx8e7w83-mNiiFFPCZWMxY0aUmRWG1whVJjhILAve8MLmOTRSCVkVFWemEmWlcpWBVJDzTFUyvyTftrut6fQYXG_Cs_bG6fv9Ua9_AFIwwdSZLezXjR2D_zNjnHTvosWuMwP6OepMZpyXXC2g2EAbfIwBm7fLDPRaXZ_0W3W9VtcgFtOq-PKiMNGarglmsC7-Wy9LWLqvhv3G4dLm7DDoaB0OFmsX0E669u6_rr8SOJor</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Guillard, Hervé</creator><creator>Murrone, Angelo</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3099-4408</orcidid></search><sort><creationdate>20040501</creationdate><title>On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes</title><author>Guillard, Hervé ; Murrone, Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-68fce21a752c7a6de0b27608e546f64c330f8978b4b61ab75b939208903629b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Compressible flows; shock and detonation phenomena</topic><topic>Computational methods in fluid dynamics</topic><topic>Computational Physics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General subsonic flows</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Numerical Analysis</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillard, Hervé</creatorcontrib><creatorcontrib>Murrone, Angelo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillard, Hervé</au><au>Murrone, Angelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes</atitle><jtitle>Computers &amp; fluids</jtitle><date>2004-05-01</date><risdate>2004</risdate><volume>33</volume><issue>4</issue><spage>655</spage><epage>675</epage><pages>655-675</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><coden>CPFLBI</coden><abstract>This paper presents an analysis of Godunov scheme in the low Mach number regime. We study the Riemann problem and show that the interface pressure contains acoustic waves of order O(M *) where M * is the reference Mach number even if the initial data are well-prepared and contain only pressure fluctuations of order O(M * 2) . We then propose to modify the fluxes computed by Godunov type schemes by solving a preconditioned Riemann problem instead of the original one. We show that this strategy allows to recover a correct scaling of the pressure fluctuations. Numerical experiments confirm these theoretical results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2003.07.001</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3099-4408</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2004-05, Vol.33 (4), p.655-675
issn 0045-7930
1879-0747
language eng
recordid cdi_hal_primary_oai_HAL_hal_00871719v1
source Elsevier ScienceDirect Journals
subjects Compressible flows
shock and detonation phenomena
Computational methods in fluid dynamics
Computational Physics
Engineering Sciences
Exact sciences and technology
Fluid dynamics
Fluid mechanics
Fluids mechanics
Fundamental areas of phenomenology (including applications)
General subsonic flows
Mathematical Physics
Mathematics
Mechanics
Numerical Analysis
Physics
title On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20behavior%20of%20upwind%20schemes%20in%20the%20low%20Mach%20number%20limit:%20II.%20Godunov%20type%20schemes&rft.jtitle=Computers%20&%20fluids&rft.au=Guillard,%20Herv%C3%A9&rft.date=2004-05-01&rft.volume=33&rft.issue=4&rft.spage=655&rft.epage=675&rft.pages=655-675&rft.issn=0045-7930&rft.eissn=1879-0747&rft.coden=CPFLBI&rft_id=info:doi/10.1016/j.compfluid.2003.07.001&rft_dat=%3Cproquest_hal_p%3E28266569%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28266569&rft_id=info:pmid/&rft_els_id=S0045793003000781&rfr_iscdi=true