Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition

The ageing of power insulated gate bipolar transistor (IGBT) modules is mainly related to thermal and thermomechanical constraints applied to the device. This ageing causes degradation of the device performances and defects appearance which can lead to failures. To avoid these failures, the follow-u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronics and reliability 2011-02, Vol.51 (2), p.386-391
Hauptverfasser: Oukaour, A., Tala-Ighil, B., Pouderoux, B., Tounsi, M., Bouarroudj-Berkani, M., Lefebvre, S., Boudart, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 2
container_start_page 386
container_title Microelectronics and reliability
container_volume 51
creator Oukaour, A.
Tala-Ighil, B.
Pouderoux, B.
Tounsi, M.
Bouarroudj-Berkani, M.
Lefebvre, S.
Boudart, B.
description The ageing of power insulated gate bipolar transistor (IGBT) modules is mainly related to thermal and thermomechanical constraints applied to the device. This ageing causes degradation of the device performances and defects appearance which can lead to failures. To avoid these failures, the follow-up of the device operation and the detection of an ageing state remain a priority. This paper presents, at first, ageing tests of 1200 V–30 A IGBT module subjected to power cycling with the aim to highlight online and real-time measurable external indicators of ageing. Secondly, these indicators are used to develop a failure diagnosis method. The diagnosis is realized by artificial training methods based on pattern recognition.
doi_str_mv 10.1016/j.microrel.2010.08.006
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00869410v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026271410004348</els_id><sourcerecordid>864426853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-74d7cd418c2e060d5167f6d439c4a291eae061869c5f66e3814aec6b516e4f0e3</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpodu0f6H4UkoO3oxkrSzfugltEljIJYXehCKNN7PY1lbSJuTfR2aTXAOCB6PvvYF5jH3nsOTA1dluOZKLIeKwFFCGoJcA6gNbcN2KupP830e2ABCqFi2Xn9mXlHYA0ALnC0brLdK0rTz26HKRXITCVJV3fXl-W-3DI8ZqDP4wYKruniobM_XkyA5Vjpam2T1ivg--fNuEfrbubc4YpyqiC9uJ5sSv7FNvh4TfXvSE_f3z-_biqt7cXF5frDe1k6Bz3UrfOi-5dgJBgV9x1fbKy6Zz0oqOoy1jrlXnVr1S2GguLTp1VziUPWBzwk6Pufd2MPtIo41PJlgyV-uNmWcAxS05PPDC_jyy-xj-HzBlM1JyOAx2wnBIRisphdKrppDqSJZLpxSxf4vmYOYazM681mDmGgzoskkV44-XFTY5O_TRTo7Sm1s0Wqw4dIX7deSw3OaBMJrkCCeHnsoRs_GB3lv1DFpUoY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864426853</pqid></control><display><type>article</type><title>Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition</title><source>Elsevier ScienceDirect Journals</source><creator>Oukaour, A. ; Tala-Ighil, B. ; Pouderoux, B. ; Tounsi, M. ; Bouarroudj-Berkani, M. ; Lefebvre, S. ; Boudart, B.</creator><creatorcontrib>Oukaour, A. ; Tala-Ighil, B. ; Pouderoux, B. ; Tounsi, M. ; Bouarroudj-Berkani, M. ; Lefebvre, S. ; Boudart, B.</creatorcontrib><description>The ageing of power insulated gate bipolar transistor (IGBT) modules is mainly related to thermal and thermomechanical constraints applied to the device. This ageing causes degradation of the device performances and defects appearance which can lead to failures. To avoid these failures, the follow-up of the device operation and the detection of an ageing state remain a priority. This paper presents, at first, ageing tests of 1200 V–30 A IGBT module subjected to power cycling with the aim to highlight online and real-time measurable external indicators of ageing. Secondly, these indicators are used to develop a failure diagnosis method. The diagnosis is realized by artificial training methods based on pattern recognition.</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/j.microrel.2010.08.006</identifier><identifier>CODEN: MCRLAS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aging ; Applied sciences ; Defects ; Devices ; Diagnosis ; Electric power ; Electrical engineering. Electrical power engineering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Engineering Sciences ; Exact sciences and technology ; Failure ; Indicators ; Modules ; Other multijunction devices. Power transistors. Thyristors ; Power electronics, power supplies ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Testing, measurement, noise and reliability ; Training</subject><ispartof>Microelectronics and reliability, 2011-02, Vol.51 (2), p.386-391</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-74d7cd418c2e060d5167f6d439c4a291eae061869c5f66e3814aec6b516e4f0e3</citedby><cites>FETCH-LOGICAL-c408t-74d7cd418c2e060d5167f6d439c4a291eae061869c5f66e3814aec6b516e4f0e3</cites><orcidid>0000-0001-6403-7425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.microrel.2010.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23825109$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00869410$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Oukaour, A.</creatorcontrib><creatorcontrib>Tala-Ighil, B.</creatorcontrib><creatorcontrib>Pouderoux, B.</creatorcontrib><creatorcontrib>Tounsi, M.</creatorcontrib><creatorcontrib>Bouarroudj-Berkani, M.</creatorcontrib><creatorcontrib>Lefebvre, S.</creatorcontrib><creatorcontrib>Boudart, B.</creatorcontrib><title>Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition</title><title>Microelectronics and reliability</title><description>The ageing of power insulated gate bipolar transistor (IGBT) modules is mainly related to thermal and thermomechanical constraints applied to the device. This ageing causes degradation of the device performances and defects appearance which can lead to failures. To avoid these failures, the follow-up of the device operation and the detection of an ageing state remain a priority. This paper presents, at first, ageing tests of 1200 V–30 A IGBT module subjected to power cycling with the aim to highlight online and real-time measurable external indicators of ageing. Secondly, these indicators are used to develop a failure diagnosis method. The diagnosis is realized by artificial training methods based on pattern recognition.</description><subject>Aging</subject><subject>Applied sciences</subject><subject>Defects</subject><subject>Devices</subject><subject>Diagnosis</subject><subject>Electric power</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Indicators</subject><subject>Modules</subject><subject>Other multijunction devices. Power transistors. Thyristors</subject><subject>Power electronics, power supplies</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Testing, measurement, noise and reliability</subject><subject>Training</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhUVpodu0f6H4UkoO3oxkrSzfugltEljIJYXehCKNN7PY1lbSJuTfR2aTXAOCB6PvvYF5jH3nsOTA1dluOZKLIeKwFFCGoJcA6gNbcN2KupP830e2ABCqFi2Xn9mXlHYA0ALnC0brLdK0rTz26HKRXITCVJV3fXl-W-3DI8ZqDP4wYKruniobM_XkyA5Vjpam2T1ivg--fNuEfrbubc4YpyqiC9uJ5sSv7FNvh4TfXvSE_f3z-_biqt7cXF5frDe1k6Bz3UrfOi-5dgJBgV9x1fbKy6Zz0oqOoy1jrlXnVr1S2GguLTp1VziUPWBzwk6Pufd2MPtIo41PJlgyV-uNmWcAxS05PPDC_jyy-xj-HzBlM1JyOAx2wnBIRisphdKrppDqSJZLpxSxf4vmYOYazM681mDmGgzoskkV44-XFTY5O_TRTo7Sm1s0Wqw4dIX7deSw3OaBMJrkCCeHnsoRs_GB3lv1DFpUoY4</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Oukaour, A.</creator><creator>Tala-Ighil, B.</creator><creator>Pouderoux, B.</creator><creator>Tounsi, M.</creator><creator>Bouarroudj-Berkani, M.</creator><creator>Lefebvre, S.</creator><creator>Boudart, B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6403-7425</orcidid></search><sort><creationdate>20110201</creationdate><title>Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition</title><author>Oukaour, A. ; Tala-Ighil, B. ; Pouderoux, B. ; Tounsi, M. ; Bouarroudj-Berkani, M. ; Lefebvre, S. ; Boudart, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-74d7cd418c2e060d5167f6d439c4a291eae061869c5f66e3814aec6b516e4f0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aging</topic><topic>Applied sciences</topic><topic>Defects</topic><topic>Devices</topic><topic>Diagnosis</topic><topic>Electric power</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Indicators</topic><topic>Modules</topic><topic>Other multijunction devices. Power transistors. Thyristors</topic><topic>Power electronics, power supplies</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Testing, measurement, noise and reliability</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oukaour, A.</creatorcontrib><creatorcontrib>Tala-Ighil, B.</creatorcontrib><creatorcontrib>Pouderoux, B.</creatorcontrib><creatorcontrib>Tounsi, M.</creatorcontrib><creatorcontrib>Bouarroudj-Berkani, M.</creatorcontrib><creatorcontrib>Lefebvre, S.</creatorcontrib><creatorcontrib>Boudart, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oukaour, A.</au><au>Tala-Ighil, B.</au><au>Pouderoux, B.</au><au>Tounsi, M.</au><au>Bouarroudj-Berkani, M.</au><au>Lefebvre, S.</au><au>Boudart, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition</atitle><jtitle>Microelectronics and reliability</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>51</volume><issue>2</issue><spage>386</spage><epage>391</epage><pages>386-391</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><coden>MCRLAS</coden><abstract>The ageing of power insulated gate bipolar transistor (IGBT) modules is mainly related to thermal and thermomechanical constraints applied to the device. This ageing causes degradation of the device performances and defects appearance which can lead to failures. To avoid these failures, the follow-up of the device operation and the detection of an ageing state remain a priority. This paper presents, at first, ageing tests of 1200 V–30 A IGBT module subjected to power cycling with the aim to highlight online and real-time measurable external indicators of ageing. Secondly, these indicators are used to develop a failure diagnosis method. The diagnosis is realized by artificial training methods based on pattern recognition.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.microrel.2010.08.006</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6403-7425</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-2714
ispartof Microelectronics and reliability, 2011-02, Vol.51 (2), p.386-391
issn 0026-2714
1872-941X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00869410v1
source Elsevier ScienceDirect Journals
subjects Aging
Applied sciences
Defects
Devices
Diagnosis
Electric power
Electrical engineering. Electrical power engineering
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Engineering Sciences
Exact sciences and technology
Failure
Indicators
Modules
Other multijunction devices. Power transistors. Thyristors
Power electronics, power supplies
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Testing, measurement, noise and reliability
Training
title Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ageing%20defect%20detection%20on%20IGBT%20power%20modules%20by%20artificial%20training%20methods%20based%20on%20pattern%20recognition&rft.jtitle=Microelectronics%20and%20reliability&rft.au=Oukaour,%20A.&rft.date=2011-02-01&rft.volume=51&rft.issue=2&rft.spage=386&rft.epage=391&rft.pages=386-391&rft.issn=0026-2714&rft.eissn=1872-941X&rft.coden=MCRLAS&rft_id=info:doi/10.1016/j.microrel.2010.08.006&rft_dat=%3Cproquest_hal_p%3E864426853%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864426853&rft_id=info:pmid/&rft_els_id=S0026271410004348&rfr_iscdi=true