Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition
The ageing of power insulated gate bipolar transistor (IGBT) modules is mainly related to thermal and thermomechanical constraints applied to the device. This ageing causes degradation of the device performances and defects appearance which can lead to failures. To avoid these failures, the follow-u...
Gespeichert in:
Veröffentlicht in: | Microelectronics and reliability 2011-02, Vol.51 (2), p.386-391 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 391 |
---|---|
container_issue | 2 |
container_start_page | 386 |
container_title | Microelectronics and reliability |
container_volume | 51 |
creator | Oukaour, A. Tala-Ighil, B. Pouderoux, B. Tounsi, M. Bouarroudj-Berkani, M. Lefebvre, S. Boudart, B. |
description | The ageing of power insulated gate bipolar transistor (IGBT) modules is mainly related to thermal and thermomechanical constraints applied to the device. This ageing causes degradation of the device performances and defects appearance which can lead to failures. To avoid these failures, the follow-up of the device operation and the detection of an ageing state remain a priority. This paper presents, at first, ageing tests of 1200
V–30
A IGBT module subjected to power cycling with the aim to highlight online and real-time measurable external indicators of ageing. Secondly, these indicators are used to develop a failure diagnosis method. The diagnosis is realized by artificial training methods based on pattern recognition. |
doi_str_mv | 10.1016/j.microrel.2010.08.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00869410v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026271410004348</els_id><sourcerecordid>864426853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-74d7cd418c2e060d5167f6d439c4a291eae061869c5f66e3814aec6b516e4f0e3</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpodu0f6H4UkoO3oxkrSzfugltEljIJYXehCKNN7PY1lbSJuTfR2aTXAOCB6PvvYF5jH3nsOTA1dluOZKLIeKwFFCGoJcA6gNbcN2KupP830e2ABCqFi2Xn9mXlHYA0ALnC0brLdK0rTz26HKRXITCVJV3fXl-W-3DI8ZqDP4wYKruniobM_XkyA5Vjpam2T1ivg--fNuEfrbubc4YpyqiC9uJ5sSv7FNvh4TfXvSE_f3z-_biqt7cXF5frDe1k6Bz3UrfOi-5dgJBgV9x1fbKy6Zz0oqOoy1jrlXnVr1S2GguLTp1VziUPWBzwk6Pufd2MPtIo41PJlgyV-uNmWcAxS05PPDC_jyy-xj-HzBlM1JyOAx2wnBIRisphdKrppDqSJZLpxSxf4vmYOYazM681mDmGgzoskkV44-XFTY5O_TRTo7Sm1s0Wqw4dIX7deSw3OaBMJrkCCeHnsoRs_GB3lv1DFpUoY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864426853</pqid></control><display><type>article</type><title>Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition</title><source>Elsevier ScienceDirect Journals</source><creator>Oukaour, A. ; Tala-Ighil, B. ; Pouderoux, B. ; Tounsi, M. ; Bouarroudj-Berkani, M. ; Lefebvre, S. ; Boudart, B.</creator><creatorcontrib>Oukaour, A. ; Tala-Ighil, B. ; Pouderoux, B. ; Tounsi, M. ; Bouarroudj-Berkani, M. ; Lefebvre, S. ; Boudart, B.</creatorcontrib><description>The ageing of power insulated gate bipolar transistor (IGBT) modules is mainly related to thermal and thermomechanical constraints applied to the device. This ageing causes degradation of the device performances and defects appearance which can lead to failures. To avoid these failures, the follow-up of the device operation and the detection of an ageing state remain a priority. This paper presents, at first, ageing tests of 1200
V–30
A IGBT module subjected to power cycling with the aim to highlight online and real-time measurable external indicators of ageing. Secondly, these indicators are used to develop a failure diagnosis method. The diagnosis is realized by artificial training methods based on pattern recognition.</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/j.microrel.2010.08.006</identifier><identifier>CODEN: MCRLAS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aging ; Applied sciences ; Defects ; Devices ; Diagnosis ; Electric power ; Electrical engineering. Electrical power engineering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Engineering Sciences ; Exact sciences and technology ; Failure ; Indicators ; Modules ; Other multijunction devices. Power transistors. Thyristors ; Power electronics, power supplies ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Testing, measurement, noise and reliability ; Training</subject><ispartof>Microelectronics and reliability, 2011-02, Vol.51 (2), p.386-391</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-74d7cd418c2e060d5167f6d439c4a291eae061869c5f66e3814aec6b516e4f0e3</citedby><cites>FETCH-LOGICAL-c408t-74d7cd418c2e060d5167f6d439c4a291eae061869c5f66e3814aec6b516e4f0e3</cites><orcidid>0000-0001-6403-7425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.microrel.2010.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23825109$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00869410$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Oukaour, A.</creatorcontrib><creatorcontrib>Tala-Ighil, B.</creatorcontrib><creatorcontrib>Pouderoux, B.</creatorcontrib><creatorcontrib>Tounsi, M.</creatorcontrib><creatorcontrib>Bouarroudj-Berkani, M.</creatorcontrib><creatorcontrib>Lefebvre, S.</creatorcontrib><creatorcontrib>Boudart, B.</creatorcontrib><title>Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition</title><title>Microelectronics and reliability</title><description>The ageing of power insulated gate bipolar transistor (IGBT) modules is mainly related to thermal and thermomechanical constraints applied to the device. This ageing causes degradation of the device performances and defects appearance which can lead to failures. To avoid these failures, the follow-up of the device operation and the detection of an ageing state remain a priority. This paper presents, at first, ageing tests of 1200
V–30
A IGBT module subjected to power cycling with the aim to highlight online and real-time measurable external indicators of ageing. Secondly, these indicators are used to develop a failure diagnosis method. The diagnosis is realized by artificial training methods based on pattern recognition.</description><subject>Aging</subject><subject>Applied sciences</subject><subject>Defects</subject><subject>Devices</subject><subject>Diagnosis</subject><subject>Electric power</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Indicators</subject><subject>Modules</subject><subject>Other multijunction devices. Power transistors. Thyristors</subject><subject>Power electronics, power supplies</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Testing, measurement, noise and reliability</subject><subject>Training</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhUVpodu0f6H4UkoO3oxkrSzfugltEljIJYXehCKNN7PY1lbSJuTfR2aTXAOCB6PvvYF5jH3nsOTA1dluOZKLIeKwFFCGoJcA6gNbcN2KupP830e2ABCqFi2Xn9mXlHYA0ALnC0brLdK0rTz26HKRXITCVJV3fXl-W-3DI8ZqDP4wYKruniobM_XkyA5Vjpam2T1ivg--fNuEfrbubc4YpyqiC9uJ5sSv7FNvh4TfXvSE_f3z-_biqt7cXF5frDe1k6Bz3UrfOi-5dgJBgV9x1fbKy6Zz0oqOoy1jrlXnVr1S2GguLTp1VziUPWBzwk6Pufd2MPtIo41PJlgyV-uNmWcAxS05PPDC_jyy-xj-HzBlM1JyOAx2wnBIRisphdKrppDqSJZLpxSxf4vmYOYazM681mDmGgzoskkV44-XFTY5O_TRTo7Sm1s0Wqw4dIX7deSw3OaBMJrkCCeHnsoRs_GB3lv1DFpUoY4</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Oukaour, A.</creator><creator>Tala-Ighil, B.</creator><creator>Pouderoux, B.</creator><creator>Tounsi, M.</creator><creator>Bouarroudj-Berkani, M.</creator><creator>Lefebvre, S.</creator><creator>Boudart, B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6403-7425</orcidid></search><sort><creationdate>20110201</creationdate><title>Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition</title><author>Oukaour, A. ; Tala-Ighil, B. ; Pouderoux, B. ; Tounsi, M. ; Bouarroudj-Berkani, M. ; Lefebvre, S. ; Boudart, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-74d7cd418c2e060d5167f6d439c4a291eae061869c5f66e3814aec6b516e4f0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aging</topic><topic>Applied sciences</topic><topic>Defects</topic><topic>Devices</topic><topic>Diagnosis</topic><topic>Electric power</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Indicators</topic><topic>Modules</topic><topic>Other multijunction devices. Power transistors. Thyristors</topic><topic>Power electronics, power supplies</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Testing, measurement, noise and reliability</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oukaour, A.</creatorcontrib><creatorcontrib>Tala-Ighil, B.</creatorcontrib><creatorcontrib>Pouderoux, B.</creatorcontrib><creatorcontrib>Tounsi, M.</creatorcontrib><creatorcontrib>Bouarroudj-Berkani, M.</creatorcontrib><creatorcontrib>Lefebvre, S.</creatorcontrib><creatorcontrib>Boudart, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oukaour, A.</au><au>Tala-Ighil, B.</au><au>Pouderoux, B.</au><au>Tounsi, M.</au><au>Bouarroudj-Berkani, M.</au><au>Lefebvre, S.</au><au>Boudart, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition</atitle><jtitle>Microelectronics and reliability</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>51</volume><issue>2</issue><spage>386</spage><epage>391</epage><pages>386-391</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><coden>MCRLAS</coden><abstract>The ageing of power insulated gate bipolar transistor (IGBT) modules is mainly related to thermal and thermomechanical constraints applied to the device. This ageing causes degradation of the device performances and defects appearance which can lead to failures. To avoid these failures, the follow-up of the device operation and the detection of an ageing state remain a priority. This paper presents, at first, ageing tests of 1200
V–30
A IGBT module subjected to power cycling with the aim to highlight online and real-time measurable external indicators of ageing. Secondly, these indicators are used to develop a failure diagnosis method. The diagnosis is realized by artificial training methods based on pattern recognition.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.microrel.2010.08.006</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6403-7425</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-2714 |
ispartof | Microelectronics and reliability, 2011-02, Vol.51 (2), p.386-391 |
issn | 0026-2714 1872-941X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00869410v1 |
source | Elsevier ScienceDirect Journals |
subjects | Aging Applied sciences Defects Devices Diagnosis Electric power Electrical engineering. Electrical power engineering Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Engineering Sciences Exact sciences and technology Failure Indicators Modules Other multijunction devices. Power transistors. Thyristors Power electronics, power supplies Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Testing, measurement, noise and reliability Training |
title | Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ageing%20defect%20detection%20on%20IGBT%20power%20modules%20by%20artificial%20training%20methods%20based%20on%20pattern%20recognition&rft.jtitle=Microelectronics%20and%20reliability&rft.au=Oukaour,%20A.&rft.date=2011-02-01&rft.volume=51&rft.issue=2&rft.spage=386&rft.epage=391&rft.pages=386-391&rft.issn=0026-2714&rft.eissn=1872-941X&rft.coden=MCRLAS&rft_id=info:doi/10.1016/j.microrel.2010.08.006&rft_dat=%3Cproquest_hal_p%3E864426853%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864426853&rft_id=info:pmid/&rft_els_id=S0026271410004348&rfr_iscdi=true |