New consistent methods for order and coefficient estimation of continuous-time errors-in-variables fractional models
The errors-in-variables identification problem concerns dynamic systems in which input and output signals are contaminated by an additive noise. Several estimation methods have been proposed for identifying dynamic errors-in-variables rational models. This paper presents new consistent methods for o...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2013-09, Vol.66 (5), p.860-872 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The errors-in-variables identification problem concerns dynamic systems in which input and output signals are contaminated by an additive noise. Several estimation methods have been proposed for identifying dynamic errors-in-variables rational models. This paper presents new consistent methods for order and coefficient estimation of continuous-time systems by errors-in-variables fractional models. First, differentiation orders are assumed to be known and only differential equation coefficients are estimated. Two estimators based on Higher-Order Statistics (third-order cumulants) are developed: the fractional third-order based least squares algorithm (ftocls) and the fractional third-order based iterative least squares algorithm (ftocils). Then, they are extended, using a nonlinear optimization algorithm, to estimate both the differential equation coefficients and the commensurate order. The performances of the proposed algorithms are illustrated with a numerical example. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2013.04.028 |