Time Discretization Schemes for Poincaré Waves in Finite-Element Shallow-Water Models
The finite-element spatial discretization of the linear shallow-water equations is examined in the context of several temporal discretization schemes. Three finite-element pairs are considered, namely, the $P^{}_{0}-P^{}_{1}$, $P^{NC}_{1}-P^{}_{1}$, and $RT^{}_{0}-P^{}_{0}$ schemes, and the backward...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2011-01, Vol.33 (5), p.2217-2246 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2246 |
---|---|
container_issue | 5 |
container_start_page | 2217 |
container_title | SIAM journal on scientific computing |
container_volume | 33 |
creator | Roux, Daniel Y. Le Dieme, Michel Sene, Abdou |
description | The finite-element spatial discretization of the linear shallow-water equations is examined in the context of several temporal discretization schemes. Three finite-element pairs are considered, namely, the $P^{}_{0}-P^{}_{1}$, $P^{NC}_{1}-P^{}_{1}$, and $RT^{}_{0}-P^{}_{0}$ schemes, and the backward and forward Euler, Crank-Nicolson, and second and third order Adams-Bashforth time stepping schemes are employed. A Fourier analysis is performed at the discrete level for the Poincaré waves, and it determines the stability limit of the schemes and the error in wave amplitude and phase that can be expected. Numerical solutions of test problems to simulate Poincaré waves illustrate the analytical results. |
doi_str_mv | 10.1137/090779413 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00864922v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563709561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-98ad26e030d6c2dbf2da7cc4a5668044b6c9d9614ce5a7e9f831fcef313d414e3</originalsourceid><addsrcrecordid>eNpFkEFOwzAQRS0EEqWw4AYWOxYBO3bseFkVSpGKQGqhS8t1JqqrNC52WgQ34hxcjERFZTWjr6c_fz5Cl5TcUMrkLVFESsUpO0I9SlSWSKrkcbcLnuSpzE7RWYwrQqjgKu2ht5lbA75z0QZo3JdpnK_x1C5hDRGXPuAX72prws83nptdq7kaj1ztGkjuqxaqGzxdmqryH8ncNBDwky-giufopDRVhIu_2Uevo_vZcJxMnh8eh4NJYlkmmkTlpkgFEEYKYdNiUaaFkdZykwmRE84XwqpCCcotZEaCKnNGSwslo6zglAPro-u9b5tBb4Jbm_CpvXF6PJjoTiMk7x5Nd7Rlr_bsJvj3LcRGr_w21G08ragQ7Tkm_w1t8DEGKA-ulOiuYX1omP0CXhttAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916604437</pqid></control><display><type>article</type><title>Time Discretization Schemes for Poincaré Waves in Finite-Element Shallow-Water Models</title><source>SIAM Journals Online</source><creator>Roux, Daniel Y. Le ; Dieme, Michel ; Sene, Abdou</creator><creatorcontrib>Roux, Daniel Y. Le ; Dieme, Michel ; Sene, Abdou</creatorcontrib><description>The finite-element spatial discretization of the linear shallow-water equations is examined in the context of several temporal discretization schemes. Three finite-element pairs are considered, namely, the $P^{}_{0}-P^{}_{1}$, $P^{NC}_{1}-P^{}_{1}$, and $RT^{}_{0}-P^{}_{0}$ schemes, and the backward and forward Euler, Crank-Nicolson, and second and third order Adams-Bashforth time stepping schemes are employed. A Fourier analysis is performed at the discrete level for the Poincaré waves, and it determines the stability limit of the schemes and the error in wave amplitude and phase that can be expected. Numerical solutions of test problems to simulate Poincaré waves illustrate the analytical results.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/090779413</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Boundary conditions ; Fourier analysis ; Gravity waves ; Mathematics ; Numerical Analysis ; Variables</subject><ispartof>SIAM journal on scientific computing, 2011-01, Vol.33 (5), p.2217-2246</ispartof><rights>[Copyright] © 2011 Society for Industrial and Applied Mathematics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-98ad26e030d6c2dbf2da7cc4a5668044b6c9d9614ce5a7e9f831fcef313d414e3</citedby><cites>FETCH-LOGICAL-c356t-98ad26e030d6c2dbf2da7cc4a5668044b6c9d9614ce5a7e9f831fcef313d414e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3171,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00864922$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Roux, Daniel Y. Le</creatorcontrib><creatorcontrib>Dieme, Michel</creatorcontrib><creatorcontrib>Sene, Abdou</creatorcontrib><title>Time Discretization Schemes for Poincaré Waves in Finite-Element Shallow-Water Models</title><title>SIAM journal on scientific computing</title><description>The finite-element spatial discretization of the linear shallow-water equations is examined in the context of several temporal discretization schemes. Three finite-element pairs are considered, namely, the $P^{}_{0}-P^{}_{1}$, $P^{NC}_{1}-P^{}_{1}$, and $RT^{}_{0}-P^{}_{0}$ schemes, and the backward and forward Euler, Crank-Nicolson, and second and third order Adams-Bashforth time stepping schemes are employed. A Fourier analysis is performed at the discrete level for the Poincaré waves, and it determines the stability limit of the schemes and the error in wave amplitude and phase that can be expected. Numerical solutions of test problems to simulate Poincaré waves illustrate the analytical results.</description><subject>Boundary conditions</subject><subject>Fourier analysis</subject><subject>Gravity waves</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>Variables</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkEFOwzAQRS0EEqWw4AYWOxYBO3bseFkVSpGKQGqhS8t1JqqrNC52WgQ34hxcjERFZTWjr6c_fz5Cl5TcUMrkLVFESsUpO0I9SlSWSKrkcbcLnuSpzE7RWYwrQqjgKu2ht5lbA75z0QZo3JdpnK_x1C5hDRGXPuAX72prws83nptdq7kaj1ztGkjuqxaqGzxdmqryH8ncNBDwky-giufopDRVhIu_2Uevo_vZcJxMnh8eh4NJYlkmmkTlpkgFEEYKYdNiUaaFkdZykwmRE84XwqpCCcotZEaCKnNGSwslo6zglAPro-u9b5tBb4Jbm_CpvXF6PJjoTiMk7x5Nd7Rlr_bsJvj3LcRGr_w21G08ragQ7Tkm_w1t8DEGKA-ulOiuYX1omP0CXhttAQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Roux, Daniel Y. Le</creator><creator>Dieme, Michel</creator><creator>Sene, Abdou</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope></search><sort><creationdate>20110101</creationdate><title>Time Discretization Schemes for Poincaré Waves in Finite-Element Shallow-Water Models</title><author>Roux, Daniel Y. Le ; Dieme, Michel ; Sene, Abdou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-98ad26e030d6c2dbf2da7cc4a5668044b6c9d9614ce5a7e9f831fcef313d414e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary conditions</topic><topic>Fourier analysis</topic><topic>Gravity waves</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roux, Daniel Y. Le</creatorcontrib><creatorcontrib>Dieme, Michel</creatorcontrib><creatorcontrib>Sene, Abdou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roux, Daniel Y. Le</au><au>Dieme, Michel</au><au>Sene, Abdou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Discretization Schemes for Poincaré Waves in Finite-Element Shallow-Water Models</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>33</volume><issue>5</issue><spage>2217</spage><epage>2246</epage><pages>2217-2246</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>The finite-element spatial discretization of the linear shallow-water equations is examined in the context of several temporal discretization schemes. Three finite-element pairs are considered, namely, the $P^{}_{0}-P^{}_{1}$, $P^{NC}_{1}-P^{}_{1}$, and $RT^{}_{0}-P^{}_{0}$ schemes, and the backward and forward Euler, Crank-Nicolson, and second and third order Adams-Bashforth time stepping schemes are employed. A Fourier analysis is performed at the discrete level for the Poincaré waves, and it determines the stability limit of the schemes and the error in wave amplitude and phase that can be expected. Numerical solutions of test problems to simulate Poincaré waves illustrate the analytical results.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090779413</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2011-01, Vol.33 (5), p.2217-2246 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00864922v1 |
source | SIAM Journals Online |
subjects | Boundary conditions Fourier analysis Gravity waves Mathematics Numerical Analysis Variables |
title | Time Discretization Schemes for Poincaré Waves in Finite-Element Shallow-Water Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Discretization%20Schemes%20for%20Poincar%C3%A9%20Waves%20in%20Finite-Element%20Shallow-Water%20Models&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Roux,%20Daniel%20Y.%20Le&rft.date=2011-01-01&rft.volume=33&rft.issue=5&rft.spage=2217&rft.epage=2246&rft.pages=2217-2246&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/090779413&rft_dat=%3Cproquest_hal_p%3E2563709561%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916604437&rft_id=info:pmid/&rfr_iscdi=true |