Classification of three-state Hamiltonians solvable by the coordinate Bethe ansatz

We classify 'all' Hamiltonians with rank 1 symmetry and nearest-neighbour interactions, acting on a periodic three-state spin chain, and solvable through (generalization of) the coordinate Bethe ansatz (CBA). In this way we obtain four multi-parametric extensions of the known 19-vertex Ham...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2013-10, Vol.46 (40), p.405001-27
Hauptverfasser: Crampé, N, Frappat, L, Ragoucy, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 40
container_start_page 405001
container_title Journal of physics. A, Mathematical and theoretical
container_volume 46
creator Crampé, N
Frappat, L
Ragoucy, E
description We classify 'all' Hamiltonians with rank 1 symmetry and nearest-neighbour interactions, acting on a periodic three-state spin chain, and solvable through (generalization of) the coordinate Bethe ansatz (CBA). In this way we obtain four multi-parametric extensions of the known 19-vertex Hamiltonians (such as Zamolodchikov-Fateev, Izergin-Korepin and Bariev Hamiltonians). Apart from the 19-vertex Hamiltonians, there exist 17-vertex and 14-vertex Hamiltonians that cannot be viewed as subcases of the 19-vertex ones. In the case of 17-vertex Hamiltonians, we get a generalization of the genus 5 special branch found by Martins, plus three new ones. We also get two 14-vertex Hamiltonians. We solve all these Hamiltonians using CBA, and provide their spectrum, eigenfunctions and Bethe equations. Special attention is given to provide the specifications of our multi-parametric Hamiltonians that give back known Hamiltonians.
doi_str_mv 10.1088/1751-8113/46/40/405001
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00864026v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669880555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-20ff06726ce307828a9377b329c1863666d0b2bb7297fd6fa75662e3d6a46f773</originalsourceid><addsrcrecordid>eNqFkNFLwzAQxoMoOKf_gvRRH-ouSXtJH-dQJwwE0eeQtgnL6JrZZIP519vSsVfh4I673_fBfYTcU3iiIOWMipymklI-y3CWQV85AL0gk9OB0cvzTPk1uQlhA5BnULAJ-Vw0OgRnXaWj823ibRLXnTFpiDqaZKm3rom-dboNSfDNQZeNScpjD5mk8r6rXTtwz2ZY9JCOv7fkyuommLtTn5Lv15evxTJdfby9L-artMoojykDawEFw8pwEJJJXXAhSs6KikrkiFhDycpSsELYGq0WOSIzvEadoRWCT8nj6LvWjdp1bqu7o_LaqeV8pYYdgMQMGB5ozz6M7K7zP3sTotq6UJmm0a3x-6AoYiEl5HneoziiVedD6Iw9e1NQQ-BqyFINWaoMVQZqDLwXslHo_E5t_L5r--__E_0B2TqApw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669880555</pqid></control><display><type>article</type><title>Classification of three-state Hamiltonians solvable by the coordinate Bethe ansatz</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Crampé, N ; Frappat, L ; Ragoucy, E</creator><creatorcontrib>Crampé, N ; Frappat, L ; Ragoucy, E</creatorcontrib><description>We classify 'all' Hamiltonians with rank 1 symmetry and nearest-neighbour interactions, acting on a periodic three-state spin chain, and solvable through (generalization of) the coordinate Bethe ansatz (CBA). In this way we obtain four multi-parametric extensions of the known 19-vertex Hamiltonians (such as Zamolodchikov-Fateev, Izergin-Korepin and Bariev Hamiltonians). Apart from the 19-vertex Hamiltonians, there exist 17-vertex and 14-vertex Hamiltonians that cannot be viewed as subcases of the 19-vertex ones. In the case of 17-vertex Hamiltonians, we get a generalization of the genus 5 special branch found by Martins, plus three new ones. We also get two 14-vertex Hamiltonians. We solve all these Hamiltonians using CBA, and provide their spectrum, eigenfunctions and Bethe equations. Special attention is given to provide the specifications of our multi-parametric Hamiltonians that give back known Hamiltonians.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8113/46/40/405001</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Chains ; Classification ; Eigenfunctions ; High Energy Physics - Theory ; Mathematical analysis ; Mathematical Physics ; Mathematics ; Physics ; Specifications ; Symmetry</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2013-10, Vol.46 (40), p.405001-27</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-20ff06726ce307828a9377b329c1863666d0b2bb7297fd6fa75662e3d6a46f773</citedby><cites>FETCH-LOGICAL-c413t-20ff06726ce307828a9377b329c1863666d0b2bb7297fd6fa75662e3d6a46f773</cites><orcidid>0000-0002-9350-8254 ; 0000-0002-3754-4074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8113/46/40/405001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00864026$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Crampé, N</creatorcontrib><creatorcontrib>Frappat, L</creatorcontrib><creatorcontrib>Ragoucy, E</creatorcontrib><title>Classification of three-state Hamiltonians solvable by the coordinate Bethe ansatz</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We classify 'all' Hamiltonians with rank 1 symmetry and nearest-neighbour interactions, acting on a periodic three-state spin chain, and solvable through (generalization of) the coordinate Bethe ansatz (CBA). In this way we obtain four multi-parametric extensions of the known 19-vertex Hamiltonians (such as Zamolodchikov-Fateev, Izergin-Korepin and Bariev Hamiltonians). Apart from the 19-vertex Hamiltonians, there exist 17-vertex and 14-vertex Hamiltonians that cannot be viewed as subcases of the 19-vertex ones. In the case of 17-vertex Hamiltonians, we get a generalization of the genus 5 special branch found by Martins, plus three new ones. We also get two 14-vertex Hamiltonians. We solve all these Hamiltonians using CBA, and provide their spectrum, eigenfunctions and Bethe equations. Special attention is given to provide the specifications of our multi-parametric Hamiltonians that give back known Hamiltonians.</description><subject>Chains</subject><subject>Classification</subject><subject>Eigenfunctions</subject><subject>High Energy Physics - Theory</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Specifications</subject><subject>Symmetry</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkNFLwzAQxoMoOKf_gvRRH-ouSXtJH-dQJwwE0eeQtgnL6JrZZIP519vSsVfh4I673_fBfYTcU3iiIOWMipymklI-y3CWQV85AL0gk9OB0cvzTPk1uQlhA5BnULAJ-Vw0OgRnXaWj823ibRLXnTFpiDqaZKm3rom-dboNSfDNQZeNScpjD5mk8r6rXTtwz2ZY9JCOv7fkyuommLtTn5Lv15evxTJdfby9L-artMoojykDawEFw8pwEJJJXXAhSs6KikrkiFhDycpSsELYGq0WOSIzvEadoRWCT8nj6LvWjdp1bqu7o_LaqeV8pYYdgMQMGB5ozz6M7K7zP3sTotq6UJmm0a3x-6AoYiEl5HneoziiVedD6Iw9e1NQQ-BqyFINWaoMVQZqDLwXslHo_E5t_L5r--__E_0B2TqApw</recordid><startdate>20131011</startdate><enddate>20131011</enddate><creator>Crampé, N</creator><creator>Frappat, L</creator><creator>Ragoucy, E</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9350-8254</orcidid><orcidid>https://orcid.org/0000-0002-3754-4074</orcidid></search><sort><creationdate>20131011</creationdate><title>Classification of three-state Hamiltonians solvable by the coordinate Bethe ansatz</title><author>Crampé, N ; Frappat, L ; Ragoucy, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-20ff06726ce307828a9377b329c1863666d0b2bb7297fd6fa75662e3d6a46f773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chains</topic><topic>Classification</topic><topic>Eigenfunctions</topic><topic>High Energy Physics - Theory</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Specifications</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crampé, N</creatorcontrib><creatorcontrib>Frappat, L</creatorcontrib><creatorcontrib>Ragoucy, E</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crampé, N</au><au>Frappat, L</au><au>Ragoucy, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of three-state Hamiltonians solvable by the coordinate Bethe ansatz</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2013-10-11</date><risdate>2013</risdate><volume>46</volume><issue>40</issue><spage>405001</spage><epage>27</epage><pages>405001-27</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We classify 'all' Hamiltonians with rank 1 symmetry and nearest-neighbour interactions, acting on a periodic three-state spin chain, and solvable through (generalization of) the coordinate Bethe ansatz (CBA). In this way we obtain four multi-parametric extensions of the known 19-vertex Hamiltonians (such as Zamolodchikov-Fateev, Izergin-Korepin and Bariev Hamiltonians). Apart from the 19-vertex Hamiltonians, there exist 17-vertex and 14-vertex Hamiltonians that cannot be viewed as subcases of the 19-vertex ones. In the case of 17-vertex Hamiltonians, we get a generalization of the genus 5 special branch found by Martins, plus three new ones. We also get two 14-vertex Hamiltonians. We solve all these Hamiltonians using CBA, and provide their spectrum, eigenfunctions and Bethe equations. Special attention is given to provide the specifications of our multi-parametric Hamiltonians that give back known Hamiltonians.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8113/46/40/405001</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-9350-8254</orcidid><orcidid>https://orcid.org/0000-0002-3754-4074</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2013-10, Vol.46 (40), p.405001-27
issn 1751-8113
1751-8121
language eng
recordid cdi_hal_primary_oai_HAL_hal_00864026v1
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Chains
Classification
Eigenfunctions
High Energy Physics - Theory
Mathematical analysis
Mathematical Physics
Mathematics
Physics
Specifications
Symmetry
title Classification of three-state Hamiltonians solvable by the coordinate Bethe ansatz
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20three-state%20Hamiltonians%20solvable%20by%20the%20coordinate%20Bethe%20ansatz&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Cramp%C3%A9,%20N&rft.date=2013-10-11&rft.volume=46&rft.issue=40&rft.spage=405001&rft.epage=27&rft.pages=405001-27&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8113/46/40/405001&rft_dat=%3Cproquest_hal_p%3E1669880555%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669880555&rft_id=info:pmid/&rfr_iscdi=true