Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse
Inspired from preconditioning studies, ischemic postconditioning, consisting of the application of intermittent interruptions of blood flow shortly after reperfusion, has been described in cardiac ischemia and recently in stroke. It is well known that ischemic tolerance can be achieved in the brain...
Gespeichert in:
Veröffentlicht in: | Stroke (1970) 2009-10, Vol.40 (10), p.3349-3355 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3355 |
---|---|
container_issue | 10 |
container_start_page | 3349 |
container_title | Stroke (1970) |
container_volume | 40 |
creator | LECONTE, Claire TIXIER, Emmanuelle FRERET, Thomas TOUTAIN, Jérôme SAULNIER, Romaric BOULOUARD, Michel ROUSSEL, Simon SCHUMANN-BARD, Pascale BERNAUDIN, Myriam |
description | Inspired from preconditioning studies, ischemic postconditioning, consisting of the application of intermittent interruptions of blood flow shortly after reperfusion, has been described in cardiac ischemia and recently in stroke. It is well known that ischemic tolerance can be achieved in the brain not only by ischemic preconditioning, but also by hypoxic preconditioning. However, the existence of hypoxic postconditioning has never been reported in cerebral ischemia.
Adult mice subjected to transient middle cerebral artery occlusion underwent chronic intermittent hypoxia starting either 1 or 5 days after ischemia and brain damage was assessed by T2-weighted MRI at 43 days. In addition, we investigated the potential neuroprotective effect of hypoxia applied after oxygen glucose deprivation in primary neuronal cultures.
The present study shows for the first time that a late application of hypoxia (5 days) after ischemia reduced delayed thalamic atrophy. Furthermore, hypoxia performed 14 hours after oxygen glucose deprivation induced neuroprotection in primary neuronal cultures. We found that hypoxia-inducible factor-1alpha expression as well as those of its target genes erythropoietin and adrenomedullin is increased by hypoxic postconditioning. Further studies with pharmacological inhibitors or recombinant proteins for erythropoietin and adrenomedullin revealed that these molecules participate in this hypoxia postconditioning-induced neuroprotection.
Altogether, this study demonstrates for the first time the existence of a delayed hypoxic postconditioning in cerebral ischemia and in vitro studies highlight hypoxia-inducible factor-1alpha and its target genes, erythropoietin and adrenomedullin, as potential effectors of postconditioning. |
doi_str_mv | 10.1161/STROKEAHA.109.557314 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00863295v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67667422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-49ad7dac7284e00ca4b87443a40c1e9cb72371a6a1f7898a9d8a416d0fbcbd5e3</originalsourceid><addsrcrecordid>eNpFkF1v0zAUhi3ExMrgHyDkG5C4SOevxPZlVAad1mkVjGvrxDlZjdK4s1NE_z2ZWpWrI7163ldHDyEfOJtzXvHrn48_Hu5u6mU958zOy1JLrl6RGS-FKlQlzGsyY0zaQihrL8nbnH8zxoQ05Rtyye0EGCZnZP0VezhgS5eHXfwbPF3HPPo4tGEMcQjDE12nOKIfM62fIAx5pAtM2CTo6W32G9wGoGGg4wbpfdxnfEcuOugzvj_dK_Lr283jYlmsHr7fLupV4VUpxkJZaHULXgujkDEPqjFaKQmKeY7WN1pIzaEC3mljDdjWgOJVy7rGN22J8op8Oe5uoHe7FLaQDi5CcMt65V4yxkwlhS3_8In9fGR3KT7vMY9uG7LHvocBp59dpatKKyEmUB1Bn2LOCbvzMmfuxbo7W58S647Wp9rH0_6-2WL7v3TSPAGfTgBkD32XYPAhnznBrTXSKPkPS-OK9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67667422</pqid></control><display><type>article</type><title>Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>LECONTE, Claire ; TIXIER, Emmanuelle ; FRERET, Thomas ; TOUTAIN, Jérôme ; SAULNIER, Romaric ; BOULOUARD, Michel ; ROUSSEL, Simon ; SCHUMANN-BARD, Pascale ; BERNAUDIN, Myriam</creator><creatorcontrib>LECONTE, Claire ; TIXIER, Emmanuelle ; FRERET, Thomas ; TOUTAIN, Jérôme ; SAULNIER, Romaric ; BOULOUARD, Michel ; ROUSSEL, Simon ; SCHUMANN-BARD, Pascale ; BERNAUDIN, Myriam</creatorcontrib><description>Inspired from preconditioning studies, ischemic postconditioning, consisting of the application of intermittent interruptions of blood flow shortly after reperfusion, has been described in cardiac ischemia and recently in stroke. It is well known that ischemic tolerance can be achieved in the brain not only by ischemic preconditioning, but also by hypoxic preconditioning. However, the existence of hypoxic postconditioning has never been reported in cerebral ischemia.
Adult mice subjected to transient middle cerebral artery occlusion underwent chronic intermittent hypoxia starting either 1 or 5 days after ischemia and brain damage was assessed by T2-weighted MRI at 43 days. In addition, we investigated the potential neuroprotective effect of hypoxia applied after oxygen glucose deprivation in primary neuronal cultures.
The present study shows for the first time that a late application of hypoxia (5 days) after ischemia reduced delayed thalamic atrophy. Furthermore, hypoxia performed 14 hours after oxygen glucose deprivation induced neuroprotection in primary neuronal cultures. We found that hypoxia-inducible factor-1alpha expression as well as those of its target genes erythropoietin and adrenomedullin is increased by hypoxic postconditioning. Further studies with pharmacological inhibitors or recombinant proteins for erythropoietin and adrenomedullin revealed that these molecules participate in this hypoxia postconditioning-induced neuroprotection.
Altogether, this study demonstrates for the first time the existence of a delayed hypoxic postconditioning in cerebral ischemia and in vitro studies highlight hypoxia-inducible factor-1alpha and its target genes, erythropoietin and adrenomedullin, as potential effectors of postconditioning.</description><identifier>ISSN: 0039-2499</identifier><identifier>EISSN: 1524-4628</identifier><identifier>DOI: 10.1161/STROKEAHA.109.557314</identifier><identifier>PMID: 19628803</identifier><identifier>CODEN: SJCCA7</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott Williams & Wilkins</publisher><subject><![CDATA[Adrenomedullin - antagonists & inhibitors ; Adrenomedullin - metabolism ; Adrenomedullin - pharmacology ; Animals ; Atrophy - physiopathology ; Atrophy - prevention & control ; Atrophy - therapy ; Biological and medical sciences ; Brain - drug effects ; Brain - metabolism ; Brain - physiopathology ; Cells, Cultured ; Cognitive science ; Cytoprotection - drug effects ; Cytoprotection - physiology ; Disease Models, Animal ; Energy Metabolism - physiology ; Erythropoietin - antagonists & inhibitors ; Erythropoietin - metabolism ; Erythropoietin - pharmacology ; Hypoxia, Brain - metabolism ; Hypoxia, Brain - physiopathology ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-Ischemia, Brain - physiopathology ; Hypoxia-Ischemia, Brain - prevention & control ; Hypoxia-Ischemia, Brain - therapy ; Infarction, Middle Cerebral Artery - physiopathology ; Infarction, Middle Cerebral Artery - prevention & control ; Infarction, Middle Cerebral Artery - therapy ; Male ; Medical sciences ; Mice ; Nerve Degeneration - physiopathology ; Nerve Degeneration - prevention & control ; Nerve Degeneration - therapy ; Neurology ; Neuropharmacology ; Neuroprotective agent ; Neuroscience ; Oxidative Stress - physiology ; Pharmacology. Drug treatments ; Time Factors ; Vascular diseases and vascular malformations of the nervous system]]></subject><ispartof>Stroke (1970), 2009-10, Vol.40 (10), p.3349-3355</ispartof><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-49ad7dac7284e00ca4b87443a40c1e9cb72371a6a1f7898a9d8a416d0fbcbd5e3</citedby><cites>FETCH-LOGICAL-c452t-49ad7dac7284e00ca4b87443a40c1e9cb72371a6a1f7898a9d8a416d0fbcbd5e3</cites><orcidid>0000-0002-4446-4451 ; 0000-0001-9031-0907 ; 0000-0003-0778-3397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3674,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21998384$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19628803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00863295$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>LECONTE, Claire</creatorcontrib><creatorcontrib>TIXIER, Emmanuelle</creatorcontrib><creatorcontrib>FRERET, Thomas</creatorcontrib><creatorcontrib>TOUTAIN, Jérôme</creatorcontrib><creatorcontrib>SAULNIER, Romaric</creatorcontrib><creatorcontrib>BOULOUARD, Michel</creatorcontrib><creatorcontrib>ROUSSEL, Simon</creatorcontrib><creatorcontrib>SCHUMANN-BARD, Pascale</creatorcontrib><creatorcontrib>BERNAUDIN, Myriam</creatorcontrib><title>Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse</title><title>Stroke (1970)</title><addtitle>Stroke</addtitle><description>Inspired from preconditioning studies, ischemic postconditioning, consisting of the application of intermittent interruptions of blood flow shortly after reperfusion, has been described in cardiac ischemia and recently in stroke. It is well known that ischemic tolerance can be achieved in the brain not only by ischemic preconditioning, but also by hypoxic preconditioning. However, the existence of hypoxic postconditioning has never been reported in cerebral ischemia.
Adult mice subjected to transient middle cerebral artery occlusion underwent chronic intermittent hypoxia starting either 1 or 5 days after ischemia and brain damage was assessed by T2-weighted MRI at 43 days. In addition, we investigated the potential neuroprotective effect of hypoxia applied after oxygen glucose deprivation in primary neuronal cultures.
The present study shows for the first time that a late application of hypoxia (5 days) after ischemia reduced delayed thalamic atrophy. Furthermore, hypoxia performed 14 hours after oxygen glucose deprivation induced neuroprotection in primary neuronal cultures. We found that hypoxia-inducible factor-1alpha expression as well as those of its target genes erythropoietin and adrenomedullin is increased by hypoxic postconditioning. Further studies with pharmacological inhibitors or recombinant proteins for erythropoietin and adrenomedullin revealed that these molecules participate in this hypoxia postconditioning-induced neuroprotection.
Altogether, this study demonstrates for the first time the existence of a delayed hypoxic postconditioning in cerebral ischemia and in vitro studies highlight hypoxia-inducible factor-1alpha and its target genes, erythropoietin and adrenomedullin, as potential effectors of postconditioning.</description><subject>Adrenomedullin - antagonists & inhibitors</subject><subject>Adrenomedullin - metabolism</subject><subject>Adrenomedullin - pharmacology</subject><subject>Animals</subject><subject>Atrophy - physiopathology</subject><subject>Atrophy - prevention & control</subject><subject>Atrophy - therapy</subject><subject>Biological and medical sciences</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - physiopathology</subject><subject>Cells, Cultured</subject><subject>Cognitive science</subject><subject>Cytoprotection - drug effects</subject><subject>Cytoprotection - physiology</subject><subject>Disease Models, Animal</subject><subject>Energy Metabolism - physiology</subject><subject>Erythropoietin - antagonists & inhibitors</subject><subject>Erythropoietin - metabolism</subject><subject>Erythropoietin - pharmacology</subject><subject>Hypoxia, Brain - metabolism</subject><subject>Hypoxia, Brain - physiopathology</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-Ischemia, Brain - physiopathology</subject><subject>Hypoxia-Ischemia, Brain - prevention & control</subject><subject>Hypoxia-Ischemia, Brain - therapy</subject><subject>Infarction, Middle Cerebral Artery - physiopathology</subject><subject>Infarction, Middle Cerebral Artery - prevention & control</subject><subject>Infarction, Middle Cerebral Artery - therapy</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Nerve Degeneration - physiopathology</subject><subject>Nerve Degeneration - prevention & control</subject><subject>Nerve Degeneration - therapy</subject><subject>Neurology</subject><subject>Neuropharmacology</subject><subject>Neuroprotective agent</subject><subject>Neuroscience</subject><subject>Oxidative Stress - physiology</subject><subject>Pharmacology. Drug treatments</subject><subject>Time Factors</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><issn>0039-2499</issn><issn>1524-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkF1v0zAUhi3ExMrgHyDkG5C4SOevxPZlVAad1mkVjGvrxDlZjdK4s1NE_z2ZWpWrI7163ldHDyEfOJtzXvHrn48_Hu5u6mU958zOy1JLrl6RGS-FKlQlzGsyY0zaQihrL8nbnH8zxoQ05Rtyye0EGCZnZP0VezhgS5eHXfwbPF3HPPo4tGEMcQjDE12nOKIfM62fIAx5pAtM2CTo6W32G9wGoGGg4wbpfdxnfEcuOugzvj_dK_Lr283jYlmsHr7fLupV4VUpxkJZaHULXgujkDEPqjFaKQmKeY7WN1pIzaEC3mljDdjWgOJVy7rGN22J8op8Oe5uoHe7FLaQDi5CcMt65V4yxkwlhS3_8In9fGR3KT7vMY9uG7LHvocBp59dpatKKyEmUB1Bn2LOCbvzMmfuxbo7W58S647Wp9rH0_6-2WL7v3TSPAGfTgBkD32XYPAhnznBrTXSKPkPS-OK9g</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>LECONTE, Claire</creator><creator>TIXIER, Emmanuelle</creator><creator>FRERET, Thomas</creator><creator>TOUTAIN, Jérôme</creator><creator>SAULNIER, Romaric</creator><creator>BOULOUARD, Michel</creator><creator>ROUSSEL, Simon</creator><creator>SCHUMANN-BARD, Pascale</creator><creator>BERNAUDIN, Myriam</creator><general>Lippincott Williams & Wilkins</general><general>American Heart Association</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4446-4451</orcidid><orcidid>https://orcid.org/0000-0001-9031-0907</orcidid><orcidid>https://orcid.org/0000-0003-0778-3397</orcidid></search><sort><creationdate>20091001</creationdate><title>Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse</title><author>LECONTE, Claire ; TIXIER, Emmanuelle ; FRERET, Thomas ; TOUTAIN, Jérôme ; SAULNIER, Romaric ; BOULOUARD, Michel ; ROUSSEL, Simon ; SCHUMANN-BARD, Pascale ; BERNAUDIN, Myriam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-49ad7dac7284e00ca4b87443a40c1e9cb72371a6a1f7898a9d8a416d0fbcbd5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adrenomedullin - antagonists & inhibitors</topic><topic>Adrenomedullin - metabolism</topic><topic>Adrenomedullin - pharmacology</topic><topic>Animals</topic><topic>Atrophy - physiopathology</topic><topic>Atrophy - prevention & control</topic><topic>Atrophy - therapy</topic><topic>Biological and medical sciences</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - physiopathology</topic><topic>Cells, Cultured</topic><topic>Cognitive science</topic><topic>Cytoprotection - drug effects</topic><topic>Cytoprotection - physiology</topic><topic>Disease Models, Animal</topic><topic>Energy Metabolism - physiology</topic><topic>Erythropoietin - antagonists & inhibitors</topic><topic>Erythropoietin - metabolism</topic><topic>Erythropoietin - pharmacology</topic><topic>Hypoxia, Brain - metabolism</topic><topic>Hypoxia, Brain - physiopathology</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-Ischemia, Brain - physiopathology</topic><topic>Hypoxia-Ischemia, Brain - prevention & control</topic><topic>Hypoxia-Ischemia, Brain - therapy</topic><topic>Infarction, Middle Cerebral Artery - physiopathology</topic><topic>Infarction, Middle Cerebral Artery - prevention & control</topic><topic>Infarction, Middle Cerebral Artery - therapy</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Nerve Degeneration - physiopathology</topic><topic>Nerve Degeneration - prevention & control</topic><topic>Nerve Degeneration - therapy</topic><topic>Neurology</topic><topic>Neuropharmacology</topic><topic>Neuroprotective agent</topic><topic>Neuroscience</topic><topic>Oxidative Stress - physiology</topic><topic>Pharmacology. Drug treatments</topic><topic>Time Factors</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LECONTE, Claire</creatorcontrib><creatorcontrib>TIXIER, Emmanuelle</creatorcontrib><creatorcontrib>FRERET, Thomas</creatorcontrib><creatorcontrib>TOUTAIN, Jérôme</creatorcontrib><creatorcontrib>SAULNIER, Romaric</creatorcontrib><creatorcontrib>BOULOUARD, Michel</creatorcontrib><creatorcontrib>ROUSSEL, Simon</creatorcontrib><creatorcontrib>SCHUMANN-BARD, Pascale</creatorcontrib><creatorcontrib>BERNAUDIN, Myriam</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Stroke (1970)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LECONTE, Claire</au><au>TIXIER, Emmanuelle</au><au>FRERET, Thomas</au><au>TOUTAIN, Jérôme</au><au>SAULNIER, Romaric</au><au>BOULOUARD, Michel</au><au>ROUSSEL, Simon</au><au>SCHUMANN-BARD, Pascale</au><au>BERNAUDIN, Myriam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse</atitle><jtitle>Stroke (1970)</jtitle><addtitle>Stroke</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>40</volume><issue>10</issue><spage>3349</spage><epage>3355</epage><pages>3349-3355</pages><issn>0039-2499</issn><eissn>1524-4628</eissn><coden>SJCCA7</coden><abstract>Inspired from preconditioning studies, ischemic postconditioning, consisting of the application of intermittent interruptions of blood flow shortly after reperfusion, has been described in cardiac ischemia and recently in stroke. It is well known that ischemic tolerance can be achieved in the brain not only by ischemic preconditioning, but also by hypoxic preconditioning. However, the existence of hypoxic postconditioning has never been reported in cerebral ischemia.
Adult mice subjected to transient middle cerebral artery occlusion underwent chronic intermittent hypoxia starting either 1 or 5 days after ischemia and brain damage was assessed by T2-weighted MRI at 43 days. In addition, we investigated the potential neuroprotective effect of hypoxia applied after oxygen glucose deprivation in primary neuronal cultures.
The present study shows for the first time that a late application of hypoxia (5 days) after ischemia reduced delayed thalamic atrophy. Furthermore, hypoxia performed 14 hours after oxygen glucose deprivation induced neuroprotection in primary neuronal cultures. We found that hypoxia-inducible factor-1alpha expression as well as those of its target genes erythropoietin and adrenomedullin is increased by hypoxic postconditioning. Further studies with pharmacological inhibitors or recombinant proteins for erythropoietin and adrenomedullin revealed that these molecules participate in this hypoxia postconditioning-induced neuroprotection.
Altogether, this study demonstrates for the first time the existence of a delayed hypoxic postconditioning in cerebral ischemia and in vitro studies highlight hypoxia-inducible factor-1alpha and its target genes, erythropoietin and adrenomedullin, as potential effectors of postconditioning.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott Williams & Wilkins</pub><pmid>19628803</pmid><doi>10.1161/STROKEAHA.109.557314</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4446-4451</orcidid><orcidid>https://orcid.org/0000-0001-9031-0907</orcidid><orcidid>https://orcid.org/0000-0003-0778-3397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-2499 |
ispartof | Stroke (1970), 2009-10, Vol.40 (10), p.3349-3355 |
issn | 0039-2499 1524-4628 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00863295v1 |
source | MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Journals@Ovid Complete |
subjects | Adrenomedullin - antagonists & inhibitors Adrenomedullin - metabolism Adrenomedullin - pharmacology Animals Atrophy - physiopathology Atrophy - prevention & control Atrophy - therapy Biological and medical sciences Brain - drug effects Brain - metabolism Brain - physiopathology Cells, Cultured Cognitive science Cytoprotection - drug effects Cytoprotection - physiology Disease Models, Animal Energy Metabolism - physiology Erythropoietin - antagonists & inhibitors Erythropoietin - metabolism Erythropoietin - pharmacology Hypoxia, Brain - metabolism Hypoxia, Brain - physiopathology Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Hypoxia-Ischemia, Brain - physiopathology Hypoxia-Ischemia, Brain - prevention & control Hypoxia-Ischemia, Brain - therapy Infarction, Middle Cerebral Artery - physiopathology Infarction, Middle Cerebral Artery - prevention & control Infarction, Middle Cerebral Artery - therapy Male Medical sciences Mice Nerve Degeneration - physiopathology Nerve Degeneration - prevention & control Nerve Degeneration - therapy Neurology Neuropharmacology Neuroprotective agent Neuroscience Oxidative Stress - physiology Pharmacology. Drug treatments Time Factors Vascular diseases and vascular malformations of the nervous system |
title | Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delayed%20Hypoxic%20Postconditioning%20Protects%20Against%20Cerebral%20Ischemia%20in%20the%20Mouse&rft.jtitle=Stroke%20(1970)&rft.au=LECONTE,%20Claire&rft.date=2009-10-01&rft.volume=40&rft.issue=10&rft.spage=3349&rft.epage=3355&rft.pages=3349-3355&rft.issn=0039-2499&rft.eissn=1524-4628&rft.coden=SJCCA7&rft_id=info:doi/10.1161/STROKEAHA.109.557314&rft_dat=%3Cproquest_hal_p%3E67667422%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67667422&rft_id=info:pmid/19628803&rfr_iscdi=true |