Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse

Inspired from preconditioning studies, ischemic postconditioning, consisting of the application of intermittent interruptions of blood flow shortly after reperfusion, has been described in cardiac ischemia and recently in stroke. It is well known that ischemic tolerance can be achieved in the brain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stroke (1970) 2009-10, Vol.40 (10), p.3349-3355
Hauptverfasser: LECONTE, Claire, TIXIER, Emmanuelle, FRERET, Thomas, TOUTAIN, Jérôme, SAULNIER, Romaric, BOULOUARD, Michel, ROUSSEL, Simon, SCHUMANN-BARD, Pascale, BERNAUDIN, Myriam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3355
container_issue 10
container_start_page 3349
container_title Stroke (1970)
container_volume 40
creator LECONTE, Claire
TIXIER, Emmanuelle
FRERET, Thomas
TOUTAIN, Jérôme
SAULNIER, Romaric
BOULOUARD, Michel
ROUSSEL, Simon
SCHUMANN-BARD, Pascale
BERNAUDIN, Myriam
description Inspired from preconditioning studies, ischemic postconditioning, consisting of the application of intermittent interruptions of blood flow shortly after reperfusion, has been described in cardiac ischemia and recently in stroke. It is well known that ischemic tolerance can be achieved in the brain not only by ischemic preconditioning, but also by hypoxic preconditioning. However, the existence of hypoxic postconditioning has never been reported in cerebral ischemia. Adult mice subjected to transient middle cerebral artery occlusion underwent chronic intermittent hypoxia starting either 1 or 5 days after ischemia and brain damage was assessed by T2-weighted MRI at 43 days. In addition, we investigated the potential neuroprotective effect of hypoxia applied after oxygen glucose deprivation in primary neuronal cultures. The present study shows for the first time that a late application of hypoxia (5 days) after ischemia reduced delayed thalamic atrophy. Furthermore, hypoxia performed 14 hours after oxygen glucose deprivation induced neuroprotection in primary neuronal cultures. We found that hypoxia-inducible factor-1alpha expression as well as those of its target genes erythropoietin and adrenomedullin is increased by hypoxic postconditioning. Further studies with pharmacological inhibitors or recombinant proteins for erythropoietin and adrenomedullin revealed that these molecules participate in this hypoxia postconditioning-induced neuroprotection. Altogether, this study demonstrates for the first time the existence of a delayed hypoxic postconditioning in cerebral ischemia and in vitro studies highlight hypoxia-inducible factor-1alpha and its target genes, erythropoietin and adrenomedullin, as potential effectors of postconditioning.
doi_str_mv 10.1161/STROKEAHA.109.557314
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00863295v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67667422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-49ad7dac7284e00ca4b87443a40c1e9cb72371a6a1f7898a9d8a416d0fbcbd5e3</originalsourceid><addsrcrecordid>eNpFkF1v0zAUhi3ExMrgHyDkG5C4SOevxPZlVAad1mkVjGvrxDlZjdK4s1NE_z2ZWpWrI7163ldHDyEfOJtzXvHrn48_Hu5u6mU958zOy1JLrl6RGS-FKlQlzGsyY0zaQihrL8nbnH8zxoQ05Rtyye0EGCZnZP0VezhgS5eHXfwbPF3HPPo4tGEMcQjDE12nOKIfM62fIAx5pAtM2CTo6W32G9wGoGGg4wbpfdxnfEcuOugzvj_dK_Lr283jYlmsHr7fLupV4VUpxkJZaHULXgujkDEPqjFaKQmKeY7WN1pIzaEC3mljDdjWgOJVy7rGN22J8op8Oe5uoHe7FLaQDi5CcMt65V4yxkwlhS3_8In9fGR3KT7vMY9uG7LHvocBp59dpatKKyEmUB1Bn2LOCbvzMmfuxbo7W58S647Wp9rH0_6-2WL7v3TSPAGfTgBkD32XYPAhnznBrTXSKPkPS-OK9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67667422</pqid></control><display><type>article</type><title>Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>LECONTE, Claire ; TIXIER, Emmanuelle ; FRERET, Thomas ; TOUTAIN, Jérôme ; SAULNIER, Romaric ; BOULOUARD, Michel ; ROUSSEL, Simon ; SCHUMANN-BARD, Pascale ; BERNAUDIN, Myriam</creator><creatorcontrib>LECONTE, Claire ; TIXIER, Emmanuelle ; FRERET, Thomas ; TOUTAIN, Jérôme ; SAULNIER, Romaric ; BOULOUARD, Michel ; ROUSSEL, Simon ; SCHUMANN-BARD, Pascale ; BERNAUDIN, Myriam</creatorcontrib><description>Inspired from preconditioning studies, ischemic postconditioning, consisting of the application of intermittent interruptions of blood flow shortly after reperfusion, has been described in cardiac ischemia and recently in stroke. It is well known that ischemic tolerance can be achieved in the brain not only by ischemic preconditioning, but also by hypoxic preconditioning. However, the existence of hypoxic postconditioning has never been reported in cerebral ischemia. Adult mice subjected to transient middle cerebral artery occlusion underwent chronic intermittent hypoxia starting either 1 or 5 days after ischemia and brain damage was assessed by T2-weighted MRI at 43 days. In addition, we investigated the potential neuroprotective effect of hypoxia applied after oxygen glucose deprivation in primary neuronal cultures. The present study shows for the first time that a late application of hypoxia (5 days) after ischemia reduced delayed thalamic atrophy. Furthermore, hypoxia performed 14 hours after oxygen glucose deprivation induced neuroprotection in primary neuronal cultures. We found that hypoxia-inducible factor-1alpha expression as well as those of its target genes erythropoietin and adrenomedullin is increased by hypoxic postconditioning. Further studies with pharmacological inhibitors or recombinant proteins for erythropoietin and adrenomedullin revealed that these molecules participate in this hypoxia postconditioning-induced neuroprotection. Altogether, this study demonstrates for the first time the existence of a delayed hypoxic postconditioning in cerebral ischemia and in vitro studies highlight hypoxia-inducible factor-1alpha and its target genes, erythropoietin and adrenomedullin, as potential effectors of postconditioning.</description><identifier>ISSN: 0039-2499</identifier><identifier>EISSN: 1524-4628</identifier><identifier>DOI: 10.1161/STROKEAHA.109.557314</identifier><identifier>PMID: 19628803</identifier><identifier>CODEN: SJCCA7</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott Williams &amp; Wilkins</publisher><subject><![CDATA[Adrenomedullin - antagonists & inhibitors ; Adrenomedullin - metabolism ; Adrenomedullin - pharmacology ; Animals ; Atrophy - physiopathology ; Atrophy - prevention & control ; Atrophy - therapy ; Biological and medical sciences ; Brain - drug effects ; Brain - metabolism ; Brain - physiopathology ; Cells, Cultured ; Cognitive science ; Cytoprotection - drug effects ; Cytoprotection - physiology ; Disease Models, Animal ; Energy Metabolism - physiology ; Erythropoietin - antagonists & inhibitors ; Erythropoietin - metabolism ; Erythropoietin - pharmacology ; Hypoxia, Brain - metabolism ; Hypoxia, Brain - physiopathology ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-Ischemia, Brain - physiopathology ; Hypoxia-Ischemia, Brain - prevention & control ; Hypoxia-Ischemia, Brain - therapy ; Infarction, Middle Cerebral Artery - physiopathology ; Infarction, Middle Cerebral Artery - prevention & control ; Infarction, Middle Cerebral Artery - therapy ; Male ; Medical sciences ; Mice ; Nerve Degeneration - physiopathology ; Nerve Degeneration - prevention & control ; Nerve Degeneration - therapy ; Neurology ; Neuropharmacology ; Neuroprotective agent ; Neuroscience ; Oxidative Stress - physiology ; Pharmacology. Drug treatments ; Time Factors ; Vascular diseases and vascular malformations of the nervous system]]></subject><ispartof>Stroke (1970), 2009-10, Vol.40 (10), p.3349-3355</ispartof><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-49ad7dac7284e00ca4b87443a40c1e9cb72371a6a1f7898a9d8a416d0fbcbd5e3</citedby><cites>FETCH-LOGICAL-c452t-49ad7dac7284e00ca4b87443a40c1e9cb72371a6a1f7898a9d8a416d0fbcbd5e3</cites><orcidid>0000-0002-4446-4451 ; 0000-0001-9031-0907 ; 0000-0003-0778-3397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3674,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21998384$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19628803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00863295$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>LECONTE, Claire</creatorcontrib><creatorcontrib>TIXIER, Emmanuelle</creatorcontrib><creatorcontrib>FRERET, Thomas</creatorcontrib><creatorcontrib>TOUTAIN, Jérôme</creatorcontrib><creatorcontrib>SAULNIER, Romaric</creatorcontrib><creatorcontrib>BOULOUARD, Michel</creatorcontrib><creatorcontrib>ROUSSEL, Simon</creatorcontrib><creatorcontrib>SCHUMANN-BARD, Pascale</creatorcontrib><creatorcontrib>BERNAUDIN, Myriam</creatorcontrib><title>Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse</title><title>Stroke (1970)</title><addtitle>Stroke</addtitle><description>Inspired from preconditioning studies, ischemic postconditioning, consisting of the application of intermittent interruptions of blood flow shortly after reperfusion, has been described in cardiac ischemia and recently in stroke. It is well known that ischemic tolerance can be achieved in the brain not only by ischemic preconditioning, but also by hypoxic preconditioning. However, the existence of hypoxic postconditioning has never been reported in cerebral ischemia. Adult mice subjected to transient middle cerebral artery occlusion underwent chronic intermittent hypoxia starting either 1 or 5 days after ischemia and brain damage was assessed by T2-weighted MRI at 43 days. In addition, we investigated the potential neuroprotective effect of hypoxia applied after oxygen glucose deprivation in primary neuronal cultures. The present study shows for the first time that a late application of hypoxia (5 days) after ischemia reduced delayed thalamic atrophy. Furthermore, hypoxia performed 14 hours after oxygen glucose deprivation induced neuroprotection in primary neuronal cultures. We found that hypoxia-inducible factor-1alpha expression as well as those of its target genes erythropoietin and adrenomedullin is increased by hypoxic postconditioning. Further studies with pharmacological inhibitors or recombinant proteins for erythropoietin and adrenomedullin revealed that these molecules participate in this hypoxia postconditioning-induced neuroprotection. Altogether, this study demonstrates for the first time the existence of a delayed hypoxic postconditioning in cerebral ischemia and in vitro studies highlight hypoxia-inducible factor-1alpha and its target genes, erythropoietin and adrenomedullin, as potential effectors of postconditioning.</description><subject>Adrenomedullin - antagonists &amp; inhibitors</subject><subject>Adrenomedullin - metabolism</subject><subject>Adrenomedullin - pharmacology</subject><subject>Animals</subject><subject>Atrophy - physiopathology</subject><subject>Atrophy - prevention &amp; control</subject><subject>Atrophy - therapy</subject><subject>Biological and medical sciences</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - physiopathology</subject><subject>Cells, Cultured</subject><subject>Cognitive science</subject><subject>Cytoprotection - drug effects</subject><subject>Cytoprotection - physiology</subject><subject>Disease Models, Animal</subject><subject>Energy Metabolism - physiology</subject><subject>Erythropoietin - antagonists &amp; inhibitors</subject><subject>Erythropoietin - metabolism</subject><subject>Erythropoietin - pharmacology</subject><subject>Hypoxia, Brain - metabolism</subject><subject>Hypoxia, Brain - physiopathology</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-Ischemia, Brain - physiopathology</subject><subject>Hypoxia-Ischemia, Brain - prevention &amp; control</subject><subject>Hypoxia-Ischemia, Brain - therapy</subject><subject>Infarction, Middle Cerebral Artery - physiopathology</subject><subject>Infarction, Middle Cerebral Artery - prevention &amp; control</subject><subject>Infarction, Middle Cerebral Artery - therapy</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Nerve Degeneration - physiopathology</subject><subject>Nerve Degeneration - prevention &amp; control</subject><subject>Nerve Degeneration - therapy</subject><subject>Neurology</subject><subject>Neuropharmacology</subject><subject>Neuroprotective agent</subject><subject>Neuroscience</subject><subject>Oxidative Stress - physiology</subject><subject>Pharmacology. Drug treatments</subject><subject>Time Factors</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><issn>0039-2499</issn><issn>1524-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkF1v0zAUhi3ExMrgHyDkG5C4SOevxPZlVAad1mkVjGvrxDlZjdK4s1NE_z2ZWpWrI7163ldHDyEfOJtzXvHrn48_Hu5u6mU958zOy1JLrl6RGS-FKlQlzGsyY0zaQihrL8nbnH8zxoQ05Rtyye0EGCZnZP0VezhgS5eHXfwbPF3HPPo4tGEMcQjDE12nOKIfM62fIAx5pAtM2CTo6W32G9wGoGGg4wbpfdxnfEcuOugzvj_dK_Lr283jYlmsHr7fLupV4VUpxkJZaHULXgujkDEPqjFaKQmKeY7WN1pIzaEC3mljDdjWgOJVy7rGN22J8op8Oe5uoHe7FLaQDi5CcMt65V4yxkwlhS3_8In9fGR3KT7vMY9uG7LHvocBp59dpatKKyEmUB1Bn2LOCbvzMmfuxbo7W58S647Wp9rH0_6-2WL7v3TSPAGfTgBkD32XYPAhnznBrTXSKPkPS-OK9g</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>LECONTE, Claire</creator><creator>TIXIER, Emmanuelle</creator><creator>FRERET, Thomas</creator><creator>TOUTAIN, Jérôme</creator><creator>SAULNIER, Romaric</creator><creator>BOULOUARD, Michel</creator><creator>ROUSSEL, Simon</creator><creator>SCHUMANN-BARD, Pascale</creator><creator>BERNAUDIN, Myriam</creator><general>Lippincott Williams &amp; Wilkins</general><general>American Heart Association</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4446-4451</orcidid><orcidid>https://orcid.org/0000-0001-9031-0907</orcidid><orcidid>https://orcid.org/0000-0003-0778-3397</orcidid></search><sort><creationdate>20091001</creationdate><title>Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse</title><author>LECONTE, Claire ; TIXIER, Emmanuelle ; FRERET, Thomas ; TOUTAIN, Jérôme ; SAULNIER, Romaric ; BOULOUARD, Michel ; ROUSSEL, Simon ; SCHUMANN-BARD, Pascale ; BERNAUDIN, Myriam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-49ad7dac7284e00ca4b87443a40c1e9cb72371a6a1f7898a9d8a416d0fbcbd5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adrenomedullin - antagonists &amp; inhibitors</topic><topic>Adrenomedullin - metabolism</topic><topic>Adrenomedullin - pharmacology</topic><topic>Animals</topic><topic>Atrophy - physiopathology</topic><topic>Atrophy - prevention &amp; control</topic><topic>Atrophy - therapy</topic><topic>Biological and medical sciences</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - physiopathology</topic><topic>Cells, Cultured</topic><topic>Cognitive science</topic><topic>Cytoprotection - drug effects</topic><topic>Cytoprotection - physiology</topic><topic>Disease Models, Animal</topic><topic>Energy Metabolism - physiology</topic><topic>Erythropoietin - antagonists &amp; inhibitors</topic><topic>Erythropoietin - metabolism</topic><topic>Erythropoietin - pharmacology</topic><topic>Hypoxia, Brain - metabolism</topic><topic>Hypoxia, Brain - physiopathology</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-Ischemia, Brain - physiopathology</topic><topic>Hypoxia-Ischemia, Brain - prevention &amp; control</topic><topic>Hypoxia-Ischemia, Brain - therapy</topic><topic>Infarction, Middle Cerebral Artery - physiopathology</topic><topic>Infarction, Middle Cerebral Artery - prevention &amp; control</topic><topic>Infarction, Middle Cerebral Artery - therapy</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Nerve Degeneration - physiopathology</topic><topic>Nerve Degeneration - prevention &amp; control</topic><topic>Nerve Degeneration - therapy</topic><topic>Neurology</topic><topic>Neuropharmacology</topic><topic>Neuroprotective agent</topic><topic>Neuroscience</topic><topic>Oxidative Stress - physiology</topic><topic>Pharmacology. Drug treatments</topic><topic>Time Factors</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LECONTE, Claire</creatorcontrib><creatorcontrib>TIXIER, Emmanuelle</creatorcontrib><creatorcontrib>FRERET, Thomas</creatorcontrib><creatorcontrib>TOUTAIN, Jérôme</creatorcontrib><creatorcontrib>SAULNIER, Romaric</creatorcontrib><creatorcontrib>BOULOUARD, Michel</creatorcontrib><creatorcontrib>ROUSSEL, Simon</creatorcontrib><creatorcontrib>SCHUMANN-BARD, Pascale</creatorcontrib><creatorcontrib>BERNAUDIN, Myriam</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Stroke (1970)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LECONTE, Claire</au><au>TIXIER, Emmanuelle</au><au>FRERET, Thomas</au><au>TOUTAIN, Jérôme</au><au>SAULNIER, Romaric</au><au>BOULOUARD, Michel</au><au>ROUSSEL, Simon</au><au>SCHUMANN-BARD, Pascale</au><au>BERNAUDIN, Myriam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse</atitle><jtitle>Stroke (1970)</jtitle><addtitle>Stroke</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>40</volume><issue>10</issue><spage>3349</spage><epage>3355</epage><pages>3349-3355</pages><issn>0039-2499</issn><eissn>1524-4628</eissn><coden>SJCCA7</coden><abstract>Inspired from preconditioning studies, ischemic postconditioning, consisting of the application of intermittent interruptions of blood flow shortly after reperfusion, has been described in cardiac ischemia and recently in stroke. It is well known that ischemic tolerance can be achieved in the brain not only by ischemic preconditioning, but also by hypoxic preconditioning. However, the existence of hypoxic postconditioning has never been reported in cerebral ischemia. Adult mice subjected to transient middle cerebral artery occlusion underwent chronic intermittent hypoxia starting either 1 or 5 days after ischemia and brain damage was assessed by T2-weighted MRI at 43 days. In addition, we investigated the potential neuroprotective effect of hypoxia applied after oxygen glucose deprivation in primary neuronal cultures. The present study shows for the first time that a late application of hypoxia (5 days) after ischemia reduced delayed thalamic atrophy. Furthermore, hypoxia performed 14 hours after oxygen glucose deprivation induced neuroprotection in primary neuronal cultures. We found that hypoxia-inducible factor-1alpha expression as well as those of its target genes erythropoietin and adrenomedullin is increased by hypoxic postconditioning. Further studies with pharmacological inhibitors or recombinant proteins for erythropoietin and adrenomedullin revealed that these molecules participate in this hypoxia postconditioning-induced neuroprotection. Altogether, this study demonstrates for the first time the existence of a delayed hypoxic postconditioning in cerebral ischemia and in vitro studies highlight hypoxia-inducible factor-1alpha and its target genes, erythropoietin and adrenomedullin, as potential effectors of postconditioning.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>19628803</pmid><doi>10.1161/STROKEAHA.109.557314</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4446-4451</orcidid><orcidid>https://orcid.org/0000-0001-9031-0907</orcidid><orcidid>https://orcid.org/0000-0003-0778-3397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-2499
ispartof Stroke (1970), 2009-10, Vol.40 (10), p.3349-3355
issn 0039-2499
1524-4628
language eng
recordid cdi_hal_primary_oai_HAL_hal_00863295v1
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Journals@Ovid Complete
subjects Adrenomedullin - antagonists & inhibitors
Adrenomedullin - metabolism
Adrenomedullin - pharmacology
Animals
Atrophy - physiopathology
Atrophy - prevention & control
Atrophy - therapy
Biological and medical sciences
Brain - drug effects
Brain - metabolism
Brain - physiopathology
Cells, Cultured
Cognitive science
Cytoprotection - drug effects
Cytoprotection - physiology
Disease Models, Animal
Energy Metabolism - physiology
Erythropoietin - antagonists & inhibitors
Erythropoietin - metabolism
Erythropoietin - pharmacology
Hypoxia, Brain - metabolism
Hypoxia, Brain - physiopathology
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Hypoxia-Ischemia, Brain - physiopathology
Hypoxia-Ischemia, Brain - prevention & control
Hypoxia-Ischemia, Brain - therapy
Infarction, Middle Cerebral Artery - physiopathology
Infarction, Middle Cerebral Artery - prevention & control
Infarction, Middle Cerebral Artery - therapy
Male
Medical sciences
Mice
Nerve Degeneration - physiopathology
Nerve Degeneration - prevention & control
Nerve Degeneration - therapy
Neurology
Neuropharmacology
Neuroprotective agent
Neuroscience
Oxidative Stress - physiology
Pharmacology. Drug treatments
Time Factors
Vascular diseases and vascular malformations of the nervous system
title Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delayed%20Hypoxic%20Postconditioning%20Protects%20Against%20Cerebral%20Ischemia%20in%20the%20Mouse&rft.jtitle=Stroke%20(1970)&rft.au=LECONTE,%20Claire&rft.date=2009-10-01&rft.volume=40&rft.issue=10&rft.spage=3349&rft.epage=3355&rft.pages=3349-3355&rft.issn=0039-2499&rft.eissn=1524-4628&rft.coden=SJCCA7&rft_id=info:doi/10.1161/STROKEAHA.109.557314&rft_dat=%3Cproquest_hal_p%3E67667422%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67667422&rft_id=info:pmid/19628803&rfr_iscdi=true