High performance computing for partial differential equations

When representing realistic physical phenomena by partial differential equations (PDE), it is crucial to approximate the underlying physics correctly, to get precise results, and to efficiently use the computer architecture. Incorrect results can appear in incompressible Navier–Stokes or Stokes prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2011-04, Vol.43 (1), p.68-73
Hauptverfasser: Gruber, R., Ahusborde, E., Azaïez, M., Keller, V., Latt, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 68
container_title Computers & fluids
container_volume 43
creator Gruber, R.
Ahusborde, E.
Azaïez, M.
Keller, V.
Latt, J.
description When representing realistic physical phenomena by partial differential equations (PDE), it is crucial to approximate the underlying physics correctly, to get precise results, and to efficiently use the computer architecture. Incorrect results can appear in incompressible Navier–Stokes or Stokes problems when the numerical approach couples into spurious modes. In Maxwell or magnetohydrodynamic (MHD) equations the so-called spectrum pollution effect can occur, and the numerical solution does not stably converge to the physical one. Problems coming from a mesh that is not adapted to the underlying physical problem, or from an inadequate choice of the dependent and independent variables can lead to low precision. Efficiency of a code implementation can be improved by well adapting the parallel computer to the application. A new monitoring system enables to detect poor implementations, to find best suited resources to execute the job, and to adapt the processor frequency during.
doi_str_mv 10.1016/j.compfluid.2010.07.001
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00861284v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579301000160X</els_id><sourcerecordid>1677902996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-5ab0be045266bb65df3df4c875bf55a85be25b65a6df67a6f268dc0dfc846a63</originalsourceid><addsrcrecordid>eNqFkUtPwzAQhC0EEuXxG8gFAYeUtePYzoFDhYAiVeLSu-X4Aa7SJNgJEv8eh1Y9wsna0efZ0Q5CVxjmGDC738x1t-1dM3ozJ5BU4HMAfIRmWPAqB075MZoB0DLnVQGn6CzGDaS5IHSGHpb-_SPrbXBd2KpW22xyGwffvmdJynoVBq-azHjnbLDt72A_RzX4ro0X6MSpJtrL_XuO1s9P68dlvnp7eX1crHJNKR3yUtVQ25SAMFbXrDSuMI5qwcvalaUSZW1JmXTFjGNcMUeYMBqM04IyxYpzdLez_VCN7IPfqvAtO-XlcrGSkwYgGCaCfuHE3uzYPnSfo42D3PqobdOo1nZjlEJUlOCCTq63f5KYcV4BqaoJ5TtUhy7GYN0hBQY5tSA38tCCnFqQwFOqKc71fomKWjUupBv7ePhOKGAqGE3cYsfZdMYvb4OM2tvUh_HB6kGazv-76wdOuKF8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677902996</pqid></control><display><type>article</type><title>High performance computing for partial differential equations</title><source>Elsevier ScienceDirect Journals</source><creator>Gruber, R. ; Ahusborde, E. ; Azaïez, M. ; Keller, V. ; Latt, J.</creator><creatorcontrib>Gruber, R. ; Ahusborde, E. ; Azaïez, M. ; Keller, V. ; Latt, J.</creatorcontrib><description>When representing realistic physical phenomena by partial differential equations (PDE), it is crucial to approximate the underlying physics correctly, to get precise results, and to efficiently use the computer architecture. Incorrect results can appear in incompressible Navier–Stokes or Stokes problems when the numerical approach couples into spurious modes. In Maxwell or magnetohydrodynamic (MHD) equations the so-called spectrum pollution effect can occur, and the numerical solution does not stably converge to the physical one. Problems coming from a mesh that is not adapted to the underlying physical problem, or from an inadequate choice of the dependent and independent variables can lead to low precision. Efficiency of a code implementation can be improved by well adapting the parallel computer to the application. A new monitoring system enables to detect poor implementations, to find best suited resources to execute the job, and to adapt the processor frequency during.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2010.07.001</identifier><identifier>CODEN: CPFLBI</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adaptive mesh ; Applied sciences ; Complexity function ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Computer simulation ; COOL ; Electronic tubes, masers ; Electronics ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Gyrotron simulation ; High performance computing methods ; Incompressibility condition ; Linear ideal MHD stability ; Magnetic confinement and equilibrium ; Mathematical analysis ; Mathematical models ; Mathematics ; Mesh density function ; Navier-Stokes equations ; Numerical Analysis ; Partial differential equations ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Processor frequency adaptation ; Stellarators, torsatrons, heliacs, bumpy tori, and other toroidal confinement devices ; Stellerator ; Stokes law (fluid mechanics) ; Stokes problem</subject><ispartof>Computers &amp; fluids, 2011-04, Vol.43 (1), p.68-73</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-5ab0be045266bb65df3df4c875bf55a85be25b65a6df67a6f268dc0dfc846a63</citedby><cites>FETCH-LOGICAL-c444t-5ab0be045266bb65df3df4c875bf55a85be25b65a6df67a6f268dc0dfc846a63</cites><orcidid>0000-0003-0404-1152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004579301000160X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24014864$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00861284$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gruber, R.</creatorcontrib><creatorcontrib>Ahusborde, E.</creatorcontrib><creatorcontrib>Azaïez, M.</creatorcontrib><creatorcontrib>Keller, V.</creatorcontrib><creatorcontrib>Latt, J.</creatorcontrib><title>High performance computing for partial differential equations</title><title>Computers &amp; fluids</title><description>When representing realistic physical phenomena by partial differential equations (PDE), it is crucial to approximate the underlying physics correctly, to get precise results, and to efficiently use the computer architecture. Incorrect results can appear in incompressible Navier–Stokes or Stokes problems when the numerical approach couples into spurious modes. In Maxwell or magnetohydrodynamic (MHD) equations the so-called spectrum pollution effect can occur, and the numerical solution does not stably converge to the physical one. Problems coming from a mesh that is not adapted to the underlying physical problem, or from an inadequate choice of the dependent and independent variables can lead to low precision. Efficiency of a code implementation can be improved by well adapting the parallel computer to the application. A new monitoring system enables to detect poor implementations, to find best suited resources to execute the job, and to adapt the processor frequency during.</description><subject>Adaptive mesh</subject><subject>Applied sciences</subject><subject>Complexity function</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Computer simulation</subject><subject>COOL</subject><subject>Electronic tubes, masers</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gyrotron simulation</subject><subject>High performance computing methods</subject><subject>Incompressibility condition</subject><subject>Linear ideal MHD stability</subject><subject>Magnetic confinement and equilibrium</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mesh density function</subject><subject>Navier-Stokes equations</subject><subject>Numerical Analysis</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Processor frequency adaptation</subject><subject>Stellarators, torsatrons, heliacs, bumpy tori, and other toroidal confinement devices</subject><subject>Stellerator</subject><subject>Stokes law (fluid mechanics)</subject><subject>Stokes problem</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPwzAQhC0EEuXxG8gFAYeUtePYzoFDhYAiVeLSu-X4Aa7SJNgJEv8eh1Y9wsna0efZ0Q5CVxjmGDC738x1t-1dM3ozJ5BU4HMAfIRmWPAqB075MZoB0DLnVQGn6CzGDaS5IHSGHpb-_SPrbXBd2KpW22xyGwffvmdJynoVBq-azHjnbLDt72A_RzX4ro0X6MSpJtrL_XuO1s9P68dlvnp7eX1crHJNKR3yUtVQ25SAMFbXrDSuMI5qwcvalaUSZW1JmXTFjGNcMUeYMBqM04IyxYpzdLez_VCN7IPfqvAtO-XlcrGSkwYgGCaCfuHE3uzYPnSfo42D3PqobdOo1nZjlEJUlOCCTq63f5KYcV4BqaoJ5TtUhy7GYN0hBQY5tSA38tCCnFqQwFOqKc71fomKWjUupBv7ePhOKGAqGE3cYsfZdMYvb4OM2tvUh_HB6kGazv-76wdOuKF8</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Gruber, R.</creator><creator>Ahusborde, E.</creator><creator>Azaïez, M.</creator><creator>Keller, V.</creator><creator>Latt, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0404-1152</orcidid></search><sort><creationdate>20110401</creationdate><title>High performance computing for partial differential equations</title><author>Gruber, R. ; Ahusborde, E. ; Azaïez, M. ; Keller, V. ; Latt, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-5ab0be045266bb65df3df4c875bf55a85be25b65a6df67a6f268dc0dfc846a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive mesh</topic><topic>Applied sciences</topic><topic>Complexity function</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Computer simulation</topic><topic>COOL</topic><topic>Electronic tubes, masers</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gyrotron simulation</topic><topic>High performance computing methods</topic><topic>Incompressibility condition</topic><topic>Linear ideal MHD stability</topic><topic>Magnetic confinement and equilibrium</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mesh density function</topic><topic>Navier-Stokes equations</topic><topic>Numerical Analysis</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Processor frequency adaptation</topic><topic>Stellarators, torsatrons, heliacs, bumpy tori, and other toroidal confinement devices</topic><topic>Stellerator</topic><topic>Stokes law (fluid mechanics)</topic><topic>Stokes problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruber, R.</creatorcontrib><creatorcontrib>Ahusborde, E.</creatorcontrib><creatorcontrib>Azaïez, M.</creatorcontrib><creatorcontrib>Keller, V.</creatorcontrib><creatorcontrib>Latt, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruber, R.</au><au>Ahusborde, E.</au><au>Azaïez, M.</au><au>Keller, V.</au><au>Latt, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High performance computing for partial differential equations</atitle><jtitle>Computers &amp; fluids</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>43</volume><issue>1</issue><spage>68</spage><epage>73</epage><pages>68-73</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><coden>CPFLBI</coden><abstract>When representing realistic physical phenomena by partial differential equations (PDE), it is crucial to approximate the underlying physics correctly, to get precise results, and to efficiently use the computer architecture. Incorrect results can appear in incompressible Navier–Stokes or Stokes problems when the numerical approach couples into spurious modes. In Maxwell or magnetohydrodynamic (MHD) equations the so-called spectrum pollution effect can occur, and the numerical solution does not stably converge to the physical one. Problems coming from a mesh that is not adapted to the underlying physical problem, or from an inadequate choice of the dependent and independent variables can lead to low precision. Efficiency of a code implementation can be improved by well adapting the parallel computer to the application. A new monitoring system enables to detect poor implementations, to find best suited resources to execute the job, and to adapt the processor frequency during.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2010.07.001</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0404-1152</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2011-04, Vol.43 (1), p.68-73
issn 0045-7930
1879-0747
language eng
recordid cdi_hal_primary_oai_HAL_hal_00861284v1
source Elsevier ScienceDirect Journals
subjects Adaptive mesh
Applied sciences
Complexity function
Computational fluid dynamics
Computational methods in fluid dynamics
Computer simulation
COOL
Electronic tubes, masers
Electronics
Exact sciences and technology
Fluid dynamics
Fluid flow
Fundamental areas of phenomenology (including applications)
Gyrotron simulation
High performance computing methods
Incompressibility condition
Linear ideal MHD stability
Magnetic confinement and equilibrium
Mathematical analysis
Mathematical models
Mathematics
Mesh density function
Navier-Stokes equations
Numerical Analysis
Partial differential equations
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Processor frequency adaptation
Stellarators, torsatrons, heliacs, bumpy tori, and other toroidal confinement devices
Stellerator
Stokes law (fluid mechanics)
Stokes problem
title High performance computing for partial differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20performance%20computing%20for%20partial%20differential%20equations&rft.jtitle=Computers%20&%20fluids&rft.au=Gruber,%20R.&rft.date=2011-04-01&rft.volume=43&rft.issue=1&rft.spage=68&rft.epage=73&rft.pages=68-73&rft.issn=0045-7930&rft.eissn=1879-0747&rft.coden=CPFLBI&rft_id=info:doi/10.1016/j.compfluid.2010.07.001&rft_dat=%3Cproquest_hal_p%3E1677902996%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677902996&rft_id=info:pmid/&rft_els_id=S004579301000160X&rfr_iscdi=true