High performance computing for partial differential equations
When representing realistic physical phenomena by partial differential equations (PDE), it is crucial to approximate the underlying physics correctly, to get precise results, and to efficiently use the computer architecture. Incorrect results can appear in incompressible Navier–Stokes or Stokes prob...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2011-04, Vol.43 (1), p.68-73 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 1 |
container_start_page | 68 |
container_title | Computers & fluids |
container_volume | 43 |
creator | Gruber, R. Ahusborde, E. Azaïez, M. Keller, V. Latt, J. |
description | When representing realistic physical phenomena by partial differential equations (PDE), it is crucial to approximate the underlying physics correctly, to get precise results, and to efficiently use the computer architecture. Incorrect results can appear in incompressible Navier–Stokes or Stokes problems when the numerical approach couples into spurious modes. In Maxwell or magnetohydrodynamic (MHD) equations the so-called spectrum pollution effect can occur, and the numerical solution does not stably converge to the physical one. Problems coming from a mesh that is not adapted to the underlying physical problem, or from an inadequate choice of the dependent and independent variables can lead to low precision. Efficiency of a code implementation can be improved by well adapting the parallel computer to the application. A new monitoring system enables to detect poor implementations, to find best suited resources to execute the job, and to adapt the processor frequency during. |
doi_str_mv | 10.1016/j.compfluid.2010.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00861284v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579301000160X</els_id><sourcerecordid>1677902996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-5ab0be045266bb65df3df4c875bf55a85be25b65a6df67a6f268dc0dfc846a63</originalsourceid><addsrcrecordid>eNqFkUtPwzAQhC0EEuXxG8gFAYeUtePYzoFDhYAiVeLSu-X4Aa7SJNgJEv8eh1Y9wsna0efZ0Q5CVxjmGDC738x1t-1dM3ozJ5BU4HMAfIRmWPAqB075MZoB0DLnVQGn6CzGDaS5IHSGHpb-_SPrbXBd2KpW22xyGwffvmdJynoVBq-azHjnbLDt72A_RzX4ro0X6MSpJtrL_XuO1s9P68dlvnp7eX1crHJNKR3yUtVQ25SAMFbXrDSuMI5qwcvalaUSZW1JmXTFjGNcMUeYMBqM04IyxYpzdLez_VCN7IPfqvAtO-XlcrGSkwYgGCaCfuHE3uzYPnSfo42D3PqobdOo1nZjlEJUlOCCTq63f5KYcV4BqaoJ5TtUhy7GYN0hBQY5tSA38tCCnFqQwFOqKc71fomKWjUupBv7ePhOKGAqGE3cYsfZdMYvb4OM2tvUh_HB6kGazv-76wdOuKF8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677902996</pqid></control><display><type>article</type><title>High performance computing for partial differential equations</title><source>Elsevier ScienceDirect Journals</source><creator>Gruber, R. ; Ahusborde, E. ; Azaïez, M. ; Keller, V. ; Latt, J.</creator><creatorcontrib>Gruber, R. ; Ahusborde, E. ; Azaïez, M. ; Keller, V. ; Latt, J.</creatorcontrib><description>When representing realistic physical phenomena by partial differential equations (PDE), it is crucial to approximate the underlying physics correctly, to get precise results, and to efficiently use the computer architecture. Incorrect results can appear in incompressible Navier–Stokes or Stokes problems when the numerical approach couples into spurious modes. In Maxwell or magnetohydrodynamic (MHD) equations the so-called spectrum pollution effect can occur, and the numerical solution does not stably converge to the physical one. Problems coming from a mesh that is not adapted to the underlying physical problem, or from an inadequate choice of the dependent and independent variables can lead to low precision. Efficiency of a code implementation can be improved by well adapting the parallel computer to the application. A new monitoring system enables to detect poor implementations, to find best suited resources to execute the job, and to adapt the processor frequency during.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2010.07.001</identifier><identifier>CODEN: CPFLBI</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adaptive mesh ; Applied sciences ; Complexity function ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Computer simulation ; COOL ; Electronic tubes, masers ; Electronics ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Gyrotron simulation ; High performance computing methods ; Incompressibility condition ; Linear ideal MHD stability ; Magnetic confinement and equilibrium ; Mathematical analysis ; Mathematical models ; Mathematics ; Mesh density function ; Navier-Stokes equations ; Numerical Analysis ; Partial differential equations ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Processor frequency adaptation ; Stellarators, torsatrons, heliacs, bumpy tori, and other toroidal confinement devices ; Stellerator ; Stokes law (fluid mechanics) ; Stokes problem</subject><ispartof>Computers & fluids, 2011-04, Vol.43 (1), p.68-73</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-5ab0be045266bb65df3df4c875bf55a85be25b65a6df67a6f268dc0dfc846a63</citedby><cites>FETCH-LOGICAL-c444t-5ab0be045266bb65df3df4c875bf55a85be25b65a6df67a6f268dc0dfc846a63</cites><orcidid>0000-0003-0404-1152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004579301000160X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24014864$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00861284$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gruber, R.</creatorcontrib><creatorcontrib>Ahusborde, E.</creatorcontrib><creatorcontrib>Azaïez, M.</creatorcontrib><creatorcontrib>Keller, V.</creatorcontrib><creatorcontrib>Latt, J.</creatorcontrib><title>High performance computing for partial differential equations</title><title>Computers & fluids</title><description>When representing realistic physical phenomena by partial differential equations (PDE), it is crucial to approximate the underlying physics correctly, to get precise results, and to efficiently use the computer architecture. Incorrect results can appear in incompressible Navier–Stokes or Stokes problems when the numerical approach couples into spurious modes. In Maxwell or magnetohydrodynamic (MHD) equations the so-called spectrum pollution effect can occur, and the numerical solution does not stably converge to the physical one. Problems coming from a mesh that is not adapted to the underlying physical problem, or from an inadequate choice of the dependent and independent variables can lead to low precision. Efficiency of a code implementation can be improved by well adapting the parallel computer to the application. A new monitoring system enables to detect poor implementations, to find best suited resources to execute the job, and to adapt the processor frequency during.</description><subject>Adaptive mesh</subject><subject>Applied sciences</subject><subject>Complexity function</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Computer simulation</subject><subject>COOL</subject><subject>Electronic tubes, masers</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gyrotron simulation</subject><subject>High performance computing methods</subject><subject>Incompressibility condition</subject><subject>Linear ideal MHD stability</subject><subject>Magnetic confinement and equilibrium</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mesh density function</subject><subject>Navier-Stokes equations</subject><subject>Numerical Analysis</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Processor frequency adaptation</subject><subject>Stellarators, torsatrons, heliacs, bumpy tori, and other toroidal confinement devices</subject><subject>Stellerator</subject><subject>Stokes law (fluid mechanics)</subject><subject>Stokes problem</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPwzAQhC0EEuXxG8gFAYeUtePYzoFDhYAiVeLSu-X4Aa7SJNgJEv8eh1Y9wsna0efZ0Q5CVxjmGDC738x1t-1dM3ozJ5BU4HMAfIRmWPAqB075MZoB0DLnVQGn6CzGDaS5IHSGHpb-_SPrbXBd2KpW22xyGwffvmdJynoVBq-azHjnbLDt72A_RzX4ro0X6MSpJtrL_XuO1s9P68dlvnp7eX1crHJNKR3yUtVQ25SAMFbXrDSuMI5qwcvalaUSZW1JmXTFjGNcMUeYMBqM04IyxYpzdLez_VCN7IPfqvAtO-XlcrGSkwYgGCaCfuHE3uzYPnSfo42D3PqobdOo1nZjlEJUlOCCTq63f5KYcV4BqaoJ5TtUhy7GYN0hBQY5tSA38tCCnFqQwFOqKc71fomKWjUupBv7ePhOKGAqGE3cYsfZdMYvb4OM2tvUh_HB6kGazv-76wdOuKF8</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Gruber, R.</creator><creator>Ahusborde, E.</creator><creator>Azaïez, M.</creator><creator>Keller, V.</creator><creator>Latt, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0404-1152</orcidid></search><sort><creationdate>20110401</creationdate><title>High performance computing for partial differential equations</title><author>Gruber, R. ; Ahusborde, E. ; Azaïez, M. ; Keller, V. ; Latt, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-5ab0be045266bb65df3df4c875bf55a85be25b65a6df67a6f268dc0dfc846a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive mesh</topic><topic>Applied sciences</topic><topic>Complexity function</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Computer simulation</topic><topic>COOL</topic><topic>Electronic tubes, masers</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gyrotron simulation</topic><topic>High performance computing methods</topic><topic>Incompressibility condition</topic><topic>Linear ideal MHD stability</topic><topic>Magnetic confinement and equilibrium</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mesh density function</topic><topic>Navier-Stokes equations</topic><topic>Numerical Analysis</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Processor frequency adaptation</topic><topic>Stellarators, torsatrons, heliacs, bumpy tori, and other toroidal confinement devices</topic><topic>Stellerator</topic><topic>Stokes law (fluid mechanics)</topic><topic>Stokes problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruber, R.</creatorcontrib><creatorcontrib>Ahusborde, E.</creatorcontrib><creatorcontrib>Azaïez, M.</creatorcontrib><creatorcontrib>Keller, V.</creatorcontrib><creatorcontrib>Latt, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruber, R.</au><au>Ahusborde, E.</au><au>Azaïez, M.</au><au>Keller, V.</au><au>Latt, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High performance computing for partial differential equations</atitle><jtitle>Computers & fluids</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>43</volume><issue>1</issue><spage>68</spage><epage>73</epage><pages>68-73</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><coden>CPFLBI</coden><abstract>When representing realistic physical phenomena by partial differential equations (PDE), it is crucial to approximate the underlying physics correctly, to get precise results, and to efficiently use the computer architecture. Incorrect results can appear in incompressible Navier–Stokes or Stokes problems when the numerical approach couples into spurious modes. In Maxwell or magnetohydrodynamic (MHD) equations the so-called spectrum pollution effect can occur, and the numerical solution does not stably converge to the physical one. Problems coming from a mesh that is not adapted to the underlying physical problem, or from an inadequate choice of the dependent and independent variables can lead to low precision. Efficiency of a code implementation can be improved by well adapting the parallel computer to the application. A new monitoring system enables to detect poor implementations, to find best suited resources to execute the job, and to adapt the processor frequency during.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2010.07.001</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0404-1152</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2011-04, Vol.43 (1), p.68-73 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00861284v1 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptive mesh Applied sciences Complexity function Computational fluid dynamics Computational methods in fluid dynamics Computer simulation COOL Electronic tubes, masers Electronics Exact sciences and technology Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) Gyrotron simulation High performance computing methods Incompressibility condition Linear ideal MHD stability Magnetic confinement and equilibrium Mathematical analysis Mathematical models Mathematics Mesh density function Navier-Stokes equations Numerical Analysis Partial differential equations Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Processor frequency adaptation Stellarators, torsatrons, heliacs, bumpy tori, and other toroidal confinement devices Stellerator Stokes law (fluid mechanics) Stokes problem |
title | High performance computing for partial differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20performance%20computing%20for%20partial%20differential%20equations&rft.jtitle=Computers%20&%20fluids&rft.au=Gruber,%20R.&rft.date=2011-04-01&rft.volume=43&rft.issue=1&rft.spage=68&rft.epage=73&rft.pages=68-73&rft.issn=0045-7930&rft.eissn=1879-0747&rft.coden=CPFLBI&rft_id=info:doi/10.1016/j.compfluid.2010.07.001&rft_dat=%3Cproquest_hal_p%3E1677902996%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677902996&rft_id=info:pmid/&rft_els_id=S004579301000160X&rfr_iscdi=true |