Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants
[Display omitted] ► p(MPC) brushes were photografted on rough surface of UHMWPE joint implants. ► p(MPC) thickness and mechanical properties are characterized by AFM-nanoindentation. ► p(MPC) tribological proprieties are characterized using a homemade biotribometer. ► Grafted p(MPC) layers cover and...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2013-08, Vol.108, p.285-294 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | |
container_start_page | 285 |
container_title | Colloids and surfaces, B, Biointerfaces |
container_volume | 108 |
creator | Wang, Na Trunfio-Sfarghiu, Ana-Maria Portinha, Daniel Descartes, Sylvie Fleury, Etienne Berthier, Yves Rieu, Jean-Paul |
description | [Display omitted]
► p(MPC) brushes were photografted on rough surface of UHMWPE joint implants. ► p(MPC) thickness and mechanical properties are characterized by AFM-nanoindentation. ► p(MPC) tribological proprieties are characterized using a homemade biotribometer. ► Grafted p(MPC) layers cover and smooth the UHMWPE surface and prevent wear.
Grafting biomimetic polymers onto biomaterials such as implants is one of the promising approaches to increase their tribological performance and biocompatibility and to reduce wear. In this paper, poly(2-methacryloyloxyethyl phosphorylcholine) (p(MPC)) brushes were obtained by photografting MPC from the rough surface of ultra high molecular weight polyethylene (UHMWPE) joint implants. Such substrates have a high roughness (Ra∼650nm) which often has the same order of magnitude as the brush thickness, so it is very difficult to estimate the vertical density profile of the grafted content. The quality of the p(MPC) grafting was evaluated through a wide range of characterization techniques to reveal the effectiveness of the grafting: atomic force microcopy (AFM) imaging and force spectroscopy, contact angle, SEM/EDX, and confocal microscopy. After testing the methods on smooth glass substrate as reference, AFM nano-indentation proves to be a reliable non destructive method to characterize the thickness and the mechanical properties of the p(MPC) layer in liquid physiological medium. Tribological measurements using a homemade biotribometer confirm that, despite heterogeneity thickness (h=0.5–6μm), the p(MPC) layer covers the roughness of the UHMWPE substrate and acts as an efficient lubricant with low friction coefficient and no wear for 9h of friction. |
doi_str_mv | 10.1016/j.colsurfb.2013.02.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00861220v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776513001318</els_id><sourcerecordid>1349092313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-15fe2483a63131aa705ac94f4b9710024b6f8730faefbe2afb80fe4293c1fd2e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAQgC0EokvhLxQf4ZDgR-JsblSr0iItDwl6thxnvPEqiYPtVFoO_PY6TdsrB8vSzOfxzHwIXVCSU0LFp2OuXR9mb5qcEcpzwnJC6Qu0oduKZwUX1Uu0ITWrsqoS5Rl6E8KREMIKWr1GZ4yXgrNabNC_72p0A-hOjVarHquxxdHbxvXu8BBIGa90BG__qmjdiJ3BsQP87ecOT50L6fR2si2eXH8awC_B6A5emQgtdmN02Lv50D3kIXanHkbAdph6NcbwFr0yqg_w7vE-R7dfrn7vbrL9j-uvu8t9pgsmYkZLA6zYciU45VSpipRK14Upmrqiy1SNMGluYhSYBpgyzZYYKFjNNTUtA36OPq51O9XLydtB-ZN0ysqby71cYoRsBWWM3NHEfljZybs_M4QoBxs09KlhcHOQlBd12mzqJKFiRbV3IXgwz7UpkYsneZRPnuTiSRImk6f08OLxj7kZoH1-9iQmAe9XwCgn1cHbIG9_pQoiSUxyizIRn1cC0t7uLHgZtIVRQ2s96ChbZ__XxT1S-bNy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349092313</pqid></control><display><type>article</type><title>Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Na ; Trunfio-Sfarghiu, Ana-Maria ; Portinha, Daniel ; Descartes, Sylvie ; Fleury, Etienne ; Berthier, Yves ; Rieu, Jean-Paul</creator><creatorcontrib>Wang, Na ; Trunfio-Sfarghiu, Ana-Maria ; Portinha, Daniel ; Descartes, Sylvie ; Fleury, Etienne ; Berthier, Yves ; Rieu, Jean-Paul</creatorcontrib><description>[Display omitted]
► p(MPC) brushes were photografted on rough surface of UHMWPE joint implants. ► p(MPC) thickness and mechanical properties are characterized by AFM-nanoindentation. ► p(MPC) tribological proprieties are characterized using a homemade biotribometer. ► Grafted p(MPC) layers cover and smooth the UHMWPE surface and prevent wear.
Grafting biomimetic polymers onto biomaterials such as implants is one of the promising approaches to increase their tribological performance and biocompatibility and to reduce wear. In this paper, poly(2-methacryloyloxyethyl phosphorylcholine) (p(MPC)) brushes were obtained by photografting MPC from the rough surface of ultra high molecular weight polyethylene (UHMWPE) joint implants. Such substrates have a high roughness (Ra∼650nm) which often has the same order of magnitude as the brush thickness, so it is very difficult to estimate the vertical density profile of the grafted content. The quality of the p(MPC) grafting was evaluated through a wide range of characterization techniques to reveal the effectiveness of the grafting: atomic force microcopy (AFM) imaging and force spectroscopy, contact angle, SEM/EDX, and confocal microscopy. After testing the methods on smooth glass substrate as reference, AFM nano-indentation proves to be a reliable non destructive method to characterize the thickness and the mechanical properties of the p(MPC) layer in liquid physiological medium. Tribological measurements using a homemade biotribometer confirm that, despite heterogeneity thickness (h=0.5–6μm), the p(MPC) layer covers the roughness of the UHMWPE substrate and acts as an efficient lubricant with low friction coefficient and no wear for 9h of friction.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2013.02.011</identifier><identifier>PMID: 23563296</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Atomic force spectroscopy ; biocompatibility ; biocompatible materials ; Biocompatible Materials - chemistry ; biomimetics ; brushes ; Chemical Sciences ; colloids ; confocal microscopy ; contact angle ; energy-dispersive X-ray analysis ; Friction ; glass ; Graft polymerization ; image analysis ; Joint implant ; Lubricants - chemistry ; Material chemistry ; Materials Testing ; mechanical properties ; Methacrylates - chemistry ; Microscopy, Atomic Force ; Microscopy, Confocal ; molecular weight ; MPC ; phospholipids ; Phosphorylcholine - analogs & derivatives ; Phosphorylcholine - chemistry ; Photochemical Processes ; polyethylene ; Polyethylenes - chemistry ; Polymers ; Polymethacrylic Acids ; Prostheses and Implants ; roughness ; scanning electron microscopy ; spectroscopy ; Spectroscopy, Fourier Transform Infrared ; Surface Properties ; UHMWPE ; Wear mechanism</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2013-08, Vol.108, p.285-294</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-15fe2483a63131aa705ac94f4b9710024b6f8730faefbe2afb80fe4293c1fd2e3</citedby><cites>FETCH-LOGICAL-c426t-15fe2483a63131aa705ac94f4b9710024b6f8730faefbe2afb80fe4293c1fd2e3</cites><orcidid>0000-0001-9494-6793 ; 0000-0003-0007-4010 ; 0000-0003-0528-8819 ; 0000-0003-0611-1820 ; 0000-0003-0592-9700 ; 0000-0002-3514-1597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927776513001318$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23563296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00861220$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Na</creatorcontrib><creatorcontrib>Trunfio-Sfarghiu, Ana-Maria</creatorcontrib><creatorcontrib>Portinha, Daniel</creatorcontrib><creatorcontrib>Descartes, Sylvie</creatorcontrib><creatorcontrib>Fleury, Etienne</creatorcontrib><creatorcontrib>Berthier, Yves</creatorcontrib><creatorcontrib>Rieu, Jean-Paul</creatorcontrib><title>Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>[Display omitted]
► p(MPC) brushes were photografted on rough surface of UHMWPE joint implants. ► p(MPC) thickness and mechanical properties are characterized by AFM-nanoindentation. ► p(MPC) tribological proprieties are characterized using a homemade biotribometer. ► Grafted p(MPC) layers cover and smooth the UHMWPE surface and prevent wear.
Grafting biomimetic polymers onto biomaterials such as implants is one of the promising approaches to increase their tribological performance and biocompatibility and to reduce wear. In this paper, poly(2-methacryloyloxyethyl phosphorylcholine) (p(MPC)) brushes were obtained by photografting MPC from the rough surface of ultra high molecular weight polyethylene (UHMWPE) joint implants. Such substrates have a high roughness (Ra∼650nm) which often has the same order of magnitude as the brush thickness, so it is very difficult to estimate the vertical density profile of the grafted content. The quality of the p(MPC) grafting was evaluated through a wide range of characterization techniques to reveal the effectiveness of the grafting: atomic force microcopy (AFM) imaging and force spectroscopy, contact angle, SEM/EDX, and confocal microscopy. After testing the methods on smooth glass substrate as reference, AFM nano-indentation proves to be a reliable non destructive method to characterize the thickness and the mechanical properties of the p(MPC) layer in liquid physiological medium. Tribological measurements using a homemade biotribometer confirm that, despite heterogeneity thickness (h=0.5–6μm), the p(MPC) layer covers the roughness of the UHMWPE substrate and acts as an efficient lubricant with low friction coefficient and no wear for 9h of friction.</description><subject>Atomic force spectroscopy</subject><subject>biocompatibility</subject><subject>biocompatible materials</subject><subject>Biocompatible Materials - chemistry</subject><subject>biomimetics</subject><subject>brushes</subject><subject>Chemical Sciences</subject><subject>colloids</subject><subject>confocal microscopy</subject><subject>contact angle</subject><subject>energy-dispersive X-ray analysis</subject><subject>Friction</subject><subject>glass</subject><subject>Graft polymerization</subject><subject>image analysis</subject><subject>Joint implant</subject><subject>Lubricants - chemistry</subject><subject>Material chemistry</subject><subject>Materials Testing</subject><subject>mechanical properties</subject><subject>Methacrylates - chemistry</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Confocal</subject><subject>molecular weight</subject><subject>MPC</subject><subject>phospholipids</subject><subject>Phosphorylcholine - analogs & derivatives</subject><subject>Phosphorylcholine - chemistry</subject><subject>Photochemical Processes</subject><subject>polyethylene</subject><subject>Polyethylenes - chemistry</subject><subject>Polymers</subject><subject>Polymethacrylic Acids</subject><subject>Prostheses and Implants</subject><subject>roughness</subject><subject>scanning electron microscopy</subject><subject>spectroscopy</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surface Properties</subject><subject>UHMWPE</subject><subject>Wear mechanism</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAQgC0EokvhLxQf4ZDgR-JsblSr0iItDwl6thxnvPEqiYPtVFoO_PY6TdsrB8vSzOfxzHwIXVCSU0LFp2OuXR9mb5qcEcpzwnJC6Qu0oduKZwUX1Uu0ITWrsqoS5Rl6E8KREMIKWr1GZ4yXgrNabNC_72p0A-hOjVarHquxxdHbxvXu8BBIGa90BG__qmjdiJ3BsQP87ecOT50L6fR2si2eXH8awC_B6A5emQgtdmN02Lv50D3kIXanHkbAdph6NcbwFr0yqg_w7vE-R7dfrn7vbrL9j-uvu8t9pgsmYkZLA6zYciU45VSpipRK14Upmrqiy1SNMGluYhSYBpgyzZYYKFjNNTUtA36OPq51O9XLydtB-ZN0ysqby71cYoRsBWWM3NHEfljZybs_M4QoBxs09KlhcHOQlBd12mzqJKFiRbV3IXgwz7UpkYsneZRPnuTiSRImk6f08OLxj7kZoH1-9iQmAe9XwCgn1cHbIG9_pQoiSUxyizIRn1cC0t7uLHgZtIVRQ2s96ChbZ__XxT1S-bNy</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Wang, Na</creator><creator>Trunfio-Sfarghiu, Ana-Maria</creator><creator>Portinha, Daniel</creator><creator>Descartes, Sylvie</creator><creator>Fleury, Etienne</creator><creator>Berthier, Yves</creator><creator>Rieu, Jean-Paul</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9494-6793</orcidid><orcidid>https://orcid.org/0000-0003-0007-4010</orcidid><orcidid>https://orcid.org/0000-0003-0528-8819</orcidid><orcidid>https://orcid.org/0000-0003-0611-1820</orcidid><orcidid>https://orcid.org/0000-0003-0592-9700</orcidid><orcidid>https://orcid.org/0000-0002-3514-1597</orcidid></search><sort><creationdate>20130801</creationdate><title>Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants</title><author>Wang, Na ; Trunfio-Sfarghiu, Ana-Maria ; Portinha, Daniel ; Descartes, Sylvie ; Fleury, Etienne ; Berthier, Yves ; Rieu, Jean-Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-15fe2483a63131aa705ac94f4b9710024b6f8730faefbe2afb80fe4293c1fd2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic force spectroscopy</topic><topic>biocompatibility</topic><topic>biocompatible materials</topic><topic>Biocompatible Materials - chemistry</topic><topic>biomimetics</topic><topic>brushes</topic><topic>Chemical Sciences</topic><topic>colloids</topic><topic>confocal microscopy</topic><topic>contact angle</topic><topic>energy-dispersive X-ray analysis</topic><topic>Friction</topic><topic>glass</topic><topic>Graft polymerization</topic><topic>image analysis</topic><topic>Joint implant</topic><topic>Lubricants - chemistry</topic><topic>Material chemistry</topic><topic>Materials Testing</topic><topic>mechanical properties</topic><topic>Methacrylates - chemistry</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Confocal</topic><topic>molecular weight</topic><topic>MPC</topic><topic>phospholipids</topic><topic>Phosphorylcholine - analogs & derivatives</topic><topic>Phosphorylcholine - chemistry</topic><topic>Photochemical Processes</topic><topic>polyethylene</topic><topic>Polyethylenes - chemistry</topic><topic>Polymers</topic><topic>Polymethacrylic Acids</topic><topic>Prostheses and Implants</topic><topic>roughness</topic><topic>scanning electron microscopy</topic><topic>spectroscopy</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surface Properties</topic><topic>UHMWPE</topic><topic>Wear mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Na</creatorcontrib><creatorcontrib>Trunfio-Sfarghiu, Ana-Maria</creatorcontrib><creatorcontrib>Portinha, Daniel</creatorcontrib><creatorcontrib>Descartes, Sylvie</creatorcontrib><creatorcontrib>Fleury, Etienne</creatorcontrib><creatorcontrib>Berthier, Yves</creatorcontrib><creatorcontrib>Rieu, Jean-Paul</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Na</au><au>Trunfio-Sfarghiu, Ana-Maria</au><au>Portinha, Daniel</au><au>Descartes, Sylvie</au><au>Fleury, Etienne</au><au>Berthier, Yves</au><au>Rieu, Jean-Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>108</volume><spage>285</spage><epage>294</epage><pages>285-294</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>[Display omitted]
► p(MPC) brushes were photografted on rough surface of UHMWPE joint implants. ► p(MPC) thickness and mechanical properties are characterized by AFM-nanoindentation. ► p(MPC) tribological proprieties are characterized using a homemade biotribometer. ► Grafted p(MPC) layers cover and smooth the UHMWPE surface and prevent wear.
Grafting biomimetic polymers onto biomaterials such as implants is one of the promising approaches to increase their tribological performance and biocompatibility and to reduce wear. In this paper, poly(2-methacryloyloxyethyl phosphorylcholine) (p(MPC)) brushes were obtained by photografting MPC from the rough surface of ultra high molecular weight polyethylene (UHMWPE) joint implants. Such substrates have a high roughness (Ra∼650nm) which often has the same order of magnitude as the brush thickness, so it is very difficult to estimate the vertical density profile of the grafted content. The quality of the p(MPC) grafting was evaluated through a wide range of characterization techniques to reveal the effectiveness of the grafting: atomic force microcopy (AFM) imaging and force spectroscopy, contact angle, SEM/EDX, and confocal microscopy. After testing the methods on smooth glass substrate as reference, AFM nano-indentation proves to be a reliable non destructive method to characterize the thickness and the mechanical properties of the p(MPC) layer in liquid physiological medium. Tribological measurements using a homemade biotribometer confirm that, despite heterogeneity thickness (h=0.5–6μm), the p(MPC) layer covers the roughness of the UHMWPE substrate and acts as an efficient lubricant with low friction coefficient and no wear for 9h of friction.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23563296</pmid><doi>10.1016/j.colsurfb.2013.02.011</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9494-6793</orcidid><orcidid>https://orcid.org/0000-0003-0007-4010</orcidid><orcidid>https://orcid.org/0000-0003-0528-8819</orcidid><orcidid>https://orcid.org/0000-0003-0611-1820</orcidid><orcidid>https://orcid.org/0000-0003-0592-9700</orcidid><orcidid>https://orcid.org/0000-0002-3514-1597</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7765 |
ispartof | Colloids and surfaces, B, Biointerfaces, 2013-08, Vol.108, p.285-294 |
issn | 0927-7765 1873-4367 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00861220v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Atomic force spectroscopy biocompatibility biocompatible materials Biocompatible Materials - chemistry biomimetics brushes Chemical Sciences colloids confocal microscopy contact angle energy-dispersive X-ray analysis Friction glass Graft polymerization image analysis Joint implant Lubricants - chemistry Material chemistry Materials Testing mechanical properties Methacrylates - chemistry Microscopy, Atomic Force Microscopy, Confocal molecular weight MPC phospholipids Phosphorylcholine - analogs & derivatives Phosphorylcholine - chemistry Photochemical Processes polyethylene Polyethylenes - chemistry Polymers Polymethacrylic Acids Prostheses and Implants roughness scanning electron microscopy spectroscopy Spectroscopy, Fourier Transform Infrared Surface Properties UHMWPE Wear mechanism |
title | Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanomechanical%20and%20tribological%20characterization%20of%20the%20MPC%20phospholipid%20polymer%20photografted%20onto%20rough%20polyethylene%20implants&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Wang,%20Na&rft.date=2013-08-01&rft.volume=108&rft.spage=285&rft.epage=294&rft.pages=285-294&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2013.02.011&rft_dat=%3Cproquest_hal_p%3E1349092313%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349092313&rft_id=info:pmid/23563296&rft_els_id=S0927776513001318&rfr_iscdi=true |