Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants

[Display omitted] ► p(MPC) brushes were photografted on rough surface of UHMWPE joint implants. ► p(MPC) thickness and mechanical properties are characterized by AFM-nanoindentation. ► p(MPC) tribological proprieties are characterized using a homemade biotribometer. ► Grafted p(MPC) layers cover and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2013-08, Vol.108, p.285-294
Hauptverfasser: Wang, Na, Trunfio-Sfarghiu, Ana-Maria, Portinha, Daniel, Descartes, Sylvie, Fleury, Etienne, Berthier, Yves, Rieu, Jean-Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue
container_start_page 285
container_title Colloids and surfaces, B, Biointerfaces
container_volume 108
creator Wang, Na
Trunfio-Sfarghiu, Ana-Maria
Portinha, Daniel
Descartes, Sylvie
Fleury, Etienne
Berthier, Yves
Rieu, Jean-Paul
description [Display omitted] ► p(MPC) brushes were photografted on rough surface of UHMWPE joint implants. ► p(MPC) thickness and mechanical properties are characterized by AFM-nanoindentation. ► p(MPC) tribological proprieties are characterized using a homemade biotribometer. ► Grafted p(MPC) layers cover and smooth the UHMWPE surface and prevent wear. Grafting biomimetic polymers onto biomaterials such as implants is one of the promising approaches to increase their tribological performance and biocompatibility and to reduce wear. In this paper, poly(2-methacryloyloxyethyl phosphorylcholine) (p(MPC)) brushes were obtained by photografting MPC from the rough surface of ultra high molecular weight polyethylene (UHMWPE) joint implants. Such substrates have a high roughness (Ra∼650nm) which often has the same order of magnitude as the brush thickness, so it is very difficult to estimate the vertical density profile of the grafted content. The quality of the p(MPC) grafting was evaluated through a wide range of characterization techniques to reveal the effectiveness of the grafting: atomic force microcopy (AFM) imaging and force spectroscopy, contact angle, SEM/EDX, and confocal microscopy. After testing the methods on smooth glass substrate as reference, AFM nano-indentation proves to be a reliable non destructive method to characterize the thickness and the mechanical properties of the p(MPC) layer in liquid physiological medium. Tribological measurements using a homemade biotribometer confirm that, despite heterogeneity thickness (h=0.5–6μm), the p(MPC) layer covers the roughness of the UHMWPE substrate and acts as an efficient lubricant with low friction coefficient and no wear for 9h of friction.
doi_str_mv 10.1016/j.colsurfb.2013.02.011
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00861220v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776513001318</els_id><sourcerecordid>1349092313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-15fe2483a63131aa705ac94f4b9710024b6f8730faefbe2afb80fe4293c1fd2e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAQgC0EokvhLxQf4ZDgR-JsblSr0iItDwl6thxnvPEqiYPtVFoO_PY6TdsrB8vSzOfxzHwIXVCSU0LFp2OuXR9mb5qcEcpzwnJC6Qu0oduKZwUX1Uu0ITWrsqoS5Rl6E8KREMIKWr1GZ4yXgrNabNC_72p0A-hOjVarHquxxdHbxvXu8BBIGa90BG__qmjdiJ3BsQP87ecOT50L6fR2si2eXH8awC_B6A5emQgtdmN02Lv50D3kIXanHkbAdph6NcbwFr0yqg_w7vE-R7dfrn7vbrL9j-uvu8t9pgsmYkZLA6zYciU45VSpipRK14Upmrqiy1SNMGluYhSYBpgyzZYYKFjNNTUtA36OPq51O9XLydtB-ZN0ysqby71cYoRsBWWM3NHEfljZybs_M4QoBxs09KlhcHOQlBd12mzqJKFiRbV3IXgwz7UpkYsneZRPnuTiSRImk6f08OLxj7kZoH1-9iQmAe9XwCgn1cHbIG9_pQoiSUxyizIRn1cC0t7uLHgZtIVRQ2s96ChbZ__XxT1S-bNy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349092313</pqid></control><display><type>article</type><title>Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Na ; Trunfio-Sfarghiu, Ana-Maria ; Portinha, Daniel ; Descartes, Sylvie ; Fleury, Etienne ; Berthier, Yves ; Rieu, Jean-Paul</creator><creatorcontrib>Wang, Na ; Trunfio-Sfarghiu, Ana-Maria ; Portinha, Daniel ; Descartes, Sylvie ; Fleury, Etienne ; Berthier, Yves ; Rieu, Jean-Paul</creatorcontrib><description>[Display omitted] ► p(MPC) brushes were photografted on rough surface of UHMWPE joint implants. ► p(MPC) thickness and mechanical properties are characterized by AFM-nanoindentation. ► p(MPC) tribological proprieties are characterized using a homemade biotribometer. ► Grafted p(MPC) layers cover and smooth the UHMWPE surface and prevent wear. Grafting biomimetic polymers onto biomaterials such as implants is one of the promising approaches to increase their tribological performance and biocompatibility and to reduce wear. In this paper, poly(2-methacryloyloxyethyl phosphorylcholine) (p(MPC)) brushes were obtained by photografting MPC from the rough surface of ultra high molecular weight polyethylene (UHMWPE) joint implants. Such substrates have a high roughness (Ra∼650nm) which often has the same order of magnitude as the brush thickness, so it is very difficult to estimate the vertical density profile of the grafted content. The quality of the p(MPC) grafting was evaluated through a wide range of characterization techniques to reveal the effectiveness of the grafting: atomic force microcopy (AFM) imaging and force spectroscopy, contact angle, SEM/EDX, and confocal microscopy. After testing the methods on smooth glass substrate as reference, AFM nano-indentation proves to be a reliable non destructive method to characterize the thickness and the mechanical properties of the p(MPC) layer in liquid physiological medium. Tribological measurements using a homemade biotribometer confirm that, despite heterogeneity thickness (h=0.5–6μm), the p(MPC) layer covers the roughness of the UHMWPE substrate and acts as an efficient lubricant with low friction coefficient and no wear for 9h of friction.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2013.02.011</identifier><identifier>PMID: 23563296</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Atomic force spectroscopy ; biocompatibility ; biocompatible materials ; Biocompatible Materials - chemistry ; biomimetics ; brushes ; Chemical Sciences ; colloids ; confocal microscopy ; contact angle ; energy-dispersive X-ray analysis ; Friction ; glass ; Graft polymerization ; image analysis ; Joint implant ; Lubricants - chemistry ; Material chemistry ; Materials Testing ; mechanical properties ; Methacrylates - chemistry ; Microscopy, Atomic Force ; Microscopy, Confocal ; molecular weight ; MPC ; phospholipids ; Phosphorylcholine - analogs &amp; derivatives ; Phosphorylcholine - chemistry ; Photochemical Processes ; polyethylene ; Polyethylenes - chemistry ; Polymers ; Polymethacrylic Acids ; Prostheses and Implants ; roughness ; scanning electron microscopy ; spectroscopy ; Spectroscopy, Fourier Transform Infrared ; Surface Properties ; UHMWPE ; Wear mechanism</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2013-08, Vol.108, p.285-294</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-15fe2483a63131aa705ac94f4b9710024b6f8730faefbe2afb80fe4293c1fd2e3</citedby><cites>FETCH-LOGICAL-c426t-15fe2483a63131aa705ac94f4b9710024b6f8730faefbe2afb80fe4293c1fd2e3</cites><orcidid>0000-0001-9494-6793 ; 0000-0003-0007-4010 ; 0000-0003-0528-8819 ; 0000-0003-0611-1820 ; 0000-0003-0592-9700 ; 0000-0002-3514-1597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927776513001318$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23563296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00861220$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Na</creatorcontrib><creatorcontrib>Trunfio-Sfarghiu, Ana-Maria</creatorcontrib><creatorcontrib>Portinha, Daniel</creatorcontrib><creatorcontrib>Descartes, Sylvie</creatorcontrib><creatorcontrib>Fleury, Etienne</creatorcontrib><creatorcontrib>Berthier, Yves</creatorcontrib><creatorcontrib>Rieu, Jean-Paul</creatorcontrib><title>Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>[Display omitted] ► p(MPC) brushes were photografted on rough surface of UHMWPE joint implants. ► p(MPC) thickness and mechanical properties are characterized by AFM-nanoindentation. ► p(MPC) tribological proprieties are characterized using a homemade biotribometer. ► Grafted p(MPC) layers cover and smooth the UHMWPE surface and prevent wear. Grafting biomimetic polymers onto biomaterials such as implants is one of the promising approaches to increase their tribological performance and biocompatibility and to reduce wear. In this paper, poly(2-methacryloyloxyethyl phosphorylcholine) (p(MPC)) brushes were obtained by photografting MPC from the rough surface of ultra high molecular weight polyethylene (UHMWPE) joint implants. Such substrates have a high roughness (Ra∼650nm) which often has the same order of magnitude as the brush thickness, so it is very difficult to estimate the vertical density profile of the grafted content. The quality of the p(MPC) grafting was evaluated through a wide range of characterization techniques to reveal the effectiveness of the grafting: atomic force microcopy (AFM) imaging and force spectroscopy, contact angle, SEM/EDX, and confocal microscopy. After testing the methods on smooth glass substrate as reference, AFM nano-indentation proves to be a reliable non destructive method to characterize the thickness and the mechanical properties of the p(MPC) layer in liquid physiological medium. Tribological measurements using a homemade biotribometer confirm that, despite heterogeneity thickness (h=0.5–6μm), the p(MPC) layer covers the roughness of the UHMWPE substrate and acts as an efficient lubricant with low friction coefficient and no wear for 9h of friction.</description><subject>Atomic force spectroscopy</subject><subject>biocompatibility</subject><subject>biocompatible materials</subject><subject>Biocompatible Materials - chemistry</subject><subject>biomimetics</subject><subject>brushes</subject><subject>Chemical Sciences</subject><subject>colloids</subject><subject>confocal microscopy</subject><subject>contact angle</subject><subject>energy-dispersive X-ray analysis</subject><subject>Friction</subject><subject>glass</subject><subject>Graft polymerization</subject><subject>image analysis</subject><subject>Joint implant</subject><subject>Lubricants - chemistry</subject><subject>Material chemistry</subject><subject>Materials Testing</subject><subject>mechanical properties</subject><subject>Methacrylates - chemistry</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Confocal</subject><subject>molecular weight</subject><subject>MPC</subject><subject>phospholipids</subject><subject>Phosphorylcholine - analogs &amp; derivatives</subject><subject>Phosphorylcholine - chemistry</subject><subject>Photochemical Processes</subject><subject>polyethylene</subject><subject>Polyethylenes - chemistry</subject><subject>Polymers</subject><subject>Polymethacrylic Acids</subject><subject>Prostheses and Implants</subject><subject>roughness</subject><subject>scanning electron microscopy</subject><subject>spectroscopy</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surface Properties</subject><subject>UHMWPE</subject><subject>Wear mechanism</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAQgC0EokvhLxQf4ZDgR-JsblSr0iItDwl6thxnvPEqiYPtVFoO_PY6TdsrB8vSzOfxzHwIXVCSU0LFp2OuXR9mb5qcEcpzwnJC6Qu0oduKZwUX1Uu0ITWrsqoS5Rl6E8KREMIKWr1GZ4yXgrNabNC_72p0A-hOjVarHquxxdHbxvXu8BBIGa90BG__qmjdiJ3BsQP87ecOT50L6fR2si2eXH8awC_B6A5emQgtdmN02Lv50D3kIXanHkbAdph6NcbwFr0yqg_w7vE-R7dfrn7vbrL9j-uvu8t9pgsmYkZLA6zYciU45VSpipRK14Upmrqiy1SNMGluYhSYBpgyzZYYKFjNNTUtA36OPq51O9XLydtB-ZN0ysqby71cYoRsBWWM3NHEfljZybs_M4QoBxs09KlhcHOQlBd12mzqJKFiRbV3IXgwz7UpkYsneZRPnuTiSRImk6f08OLxj7kZoH1-9iQmAe9XwCgn1cHbIG9_pQoiSUxyizIRn1cC0t7uLHgZtIVRQ2s96ChbZ__XxT1S-bNy</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Wang, Na</creator><creator>Trunfio-Sfarghiu, Ana-Maria</creator><creator>Portinha, Daniel</creator><creator>Descartes, Sylvie</creator><creator>Fleury, Etienne</creator><creator>Berthier, Yves</creator><creator>Rieu, Jean-Paul</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9494-6793</orcidid><orcidid>https://orcid.org/0000-0003-0007-4010</orcidid><orcidid>https://orcid.org/0000-0003-0528-8819</orcidid><orcidid>https://orcid.org/0000-0003-0611-1820</orcidid><orcidid>https://orcid.org/0000-0003-0592-9700</orcidid><orcidid>https://orcid.org/0000-0002-3514-1597</orcidid></search><sort><creationdate>20130801</creationdate><title>Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants</title><author>Wang, Na ; Trunfio-Sfarghiu, Ana-Maria ; Portinha, Daniel ; Descartes, Sylvie ; Fleury, Etienne ; Berthier, Yves ; Rieu, Jean-Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-15fe2483a63131aa705ac94f4b9710024b6f8730faefbe2afb80fe4293c1fd2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic force spectroscopy</topic><topic>biocompatibility</topic><topic>biocompatible materials</topic><topic>Biocompatible Materials - chemistry</topic><topic>biomimetics</topic><topic>brushes</topic><topic>Chemical Sciences</topic><topic>colloids</topic><topic>confocal microscopy</topic><topic>contact angle</topic><topic>energy-dispersive X-ray analysis</topic><topic>Friction</topic><topic>glass</topic><topic>Graft polymerization</topic><topic>image analysis</topic><topic>Joint implant</topic><topic>Lubricants - chemistry</topic><topic>Material chemistry</topic><topic>Materials Testing</topic><topic>mechanical properties</topic><topic>Methacrylates - chemistry</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Confocal</topic><topic>molecular weight</topic><topic>MPC</topic><topic>phospholipids</topic><topic>Phosphorylcholine - analogs &amp; derivatives</topic><topic>Phosphorylcholine - chemistry</topic><topic>Photochemical Processes</topic><topic>polyethylene</topic><topic>Polyethylenes - chemistry</topic><topic>Polymers</topic><topic>Polymethacrylic Acids</topic><topic>Prostheses and Implants</topic><topic>roughness</topic><topic>scanning electron microscopy</topic><topic>spectroscopy</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surface Properties</topic><topic>UHMWPE</topic><topic>Wear mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Na</creatorcontrib><creatorcontrib>Trunfio-Sfarghiu, Ana-Maria</creatorcontrib><creatorcontrib>Portinha, Daniel</creatorcontrib><creatorcontrib>Descartes, Sylvie</creatorcontrib><creatorcontrib>Fleury, Etienne</creatorcontrib><creatorcontrib>Berthier, Yves</creatorcontrib><creatorcontrib>Rieu, Jean-Paul</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Na</au><au>Trunfio-Sfarghiu, Ana-Maria</au><au>Portinha, Daniel</au><au>Descartes, Sylvie</au><au>Fleury, Etienne</au><au>Berthier, Yves</au><au>Rieu, Jean-Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>108</volume><spage>285</spage><epage>294</epage><pages>285-294</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>[Display omitted] ► p(MPC) brushes were photografted on rough surface of UHMWPE joint implants. ► p(MPC) thickness and mechanical properties are characterized by AFM-nanoindentation. ► p(MPC) tribological proprieties are characterized using a homemade biotribometer. ► Grafted p(MPC) layers cover and smooth the UHMWPE surface and prevent wear. Grafting biomimetic polymers onto biomaterials such as implants is one of the promising approaches to increase their tribological performance and biocompatibility and to reduce wear. In this paper, poly(2-methacryloyloxyethyl phosphorylcholine) (p(MPC)) brushes were obtained by photografting MPC from the rough surface of ultra high molecular weight polyethylene (UHMWPE) joint implants. Such substrates have a high roughness (Ra∼650nm) which often has the same order of magnitude as the brush thickness, so it is very difficult to estimate the vertical density profile of the grafted content. The quality of the p(MPC) grafting was evaluated through a wide range of characterization techniques to reveal the effectiveness of the grafting: atomic force microcopy (AFM) imaging and force spectroscopy, contact angle, SEM/EDX, and confocal microscopy. After testing the methods on smooth glass substrate as reference, AFM nano-indentation proves to be a reliable non destructive method to characterize the thickness and the mechanical properties of the p(MPC) layer in liquid physiological medium. Tribological measurements using a homemade biotribometer confirm that, despite heterogeneity thickness (h=0.5–6μm), the p(MPC) layer covers the roughness of the UHMWPE substrate and acts as an efficient lubricant with low friction coefficient and no wear for 9h of friction.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23563296</pmid><doi>10.1016/j.colsurfb.2013.02.011</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9494-6793</orcidid><orcidid>https://orcid.org/0000-0003-0007-4010</orcidid><orcidid>https://orcid.org/0000-0003-0528-8819</orcidid><orcidid>https://orcid.org/0000-0003-0611-1820</orcidid><orcidid>https://orcid.org/0000-0003-0592-9700</orcidid><orcidid>https://orcid.org/0000-0002-3514-1597</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2013-08, Vol.108, p.285-294
issn 0927-7765
1873-4367
language eng
recordid cdi_hal_primary_oai_HAL_hal_00861220v1
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Atomic force spectroscopy
biocompatibility
biocompatible materials
Biocompatible Materials - chemistry
biomimetics
brushes
Chemical Sciences
colloids
confocal microscopy
contact angle
energy-dispersive X-ray analysis
Friction
glass
Graft polymerization
image analysis
Joint implant
Lubricants - chemistry
Material chemistry
Materials Testing
mechanical properties
Methacrylates - chemistry
Microscopy, Atomic Force
Microscopy, Confocal
molecular weight
MPC
phospholipids
Phosphorylcholine - analogs & derivatives
Phosphorylcholine - chemistry
Photochemical Processes
polyethylene
Polyethylenes - chemistry
Polymers
Polymethacrylic Acids
Prostheses and Implants
roughness
scanning electron microscopy
spectroscopy
Spectroscopy, Fourier Transform Infrared
Surface Properties
UHMWPE
Wear mechanism
title Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanomechanical%20and%20tribological%20characterization%20of%20the%20MPC%20phospholipid%20polymer%20photografted%20onto%20rough%20polyethylene%20implants&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Wang,%20Na&rft.date=2013-08-01&rft.volume=108&rft.spage=285&rft.epage=294&rft.pages=285-294&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2013.02.011&rft_dat=%3Cproquest_hal_p%3E1349092313%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349092313&rft_id=info:pmid/23563296&rft_els_id=S0927776513001318&rfr_iscdi=true