On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons

Under sustained input current of increasing strength neurons eventually stop firing, entering a depolarization block. This is a robust effect that is not usually explored in experiments or explicitly implemented or tested in models. However, the range of current strength needed for a depolarization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational neuroscience 2012-10, Vol.33 (2), p.207-225
Hauptverfasser: Bianchi, Daniela, Marasco, Addolorata, Limongiello, Alessandro, Marchetti, Cristina, Marie, Helene, Tirozzi, Brunello, Migliore, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 2
container_start_page 207
container_title Journal of computational neuroscience
container_volume 33
creator Bianchi, Daniela
Marasco, Addolorata
Limongiello, Alessandro
Marchetti, Cristina
Marie, Helene
Tirozzi, Brunello
Migliore, Michele
description Under sustained input current of increasing strength neurons eventually stop firing, entering a depolarization block. This is a robust effect that is not usually explored in experiments or explicitly implemented or tested in models. However, the range of current strength needed for a depolarization block could be easily reached with a random background activity of only a few hundred excitatory synapses. Depolarization block may thus be an important property of neurons that should be better characterized in experiments and explicitly taken into account in models at all implementation scales. Here we analyze the spiking dynamics of CA1 pyramidal neuron models using the same set of ionic currents on both an accurate morphological reconstruction and on its reduction to a single-compartment. The results show the specific ion channel properties and kinetics that are needed to reproduce the experimental findings, and how their interplay can drastically modulate the neuronal dynamics and the input current range leading to a depolarization block. We suggest that this can be one of the rate-limiting mechanisms protecting a CA1 neuron from excessive spiking activity.
doi_str_mv 10.1007/s10827-012-0383-y
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00854872v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1039881092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-4560cee92bc080262154adc51fad3ceb1d1793f63adacbe444356cf18027adb23</originalsourceid><addsrcrecordid>eNqNkUFr3DAQhUVpaLZpf0AvRdBLe3CqkWxLPi5LkxQWcknPQpbkrBJbcqV1wP31leM0lEIhJyHN92ZG7yH0Acg5EMK_JiCC8oIALQgTrJhfoQ1UnBW14Ow12pCGNkXFgJ2ityndEUIEB_IGnVLKgDR1s0HdtcfHg8WD1QflXRoSnryxsZ-dv32sGDuGXkX3Sx1d8Ljtg77HblWl0d0vnJm9GpxOOHR4twU8zjHfjeqxt1MMPr1DJ53qk33_dJ6hHxffbnZXxf768vtuuy90yZpjUVY10dY2tNVEEFpTqEpldAWdMkzbFgzwhnU1U0bp1pZlyapad5BZrkxL2Rn6svY9qF6O0Q0qzjIoJ6-2e7m8ZQuqUnD6AJn9vLJjDD8nm45ycEnbvlfehinJ7BAreTaXvQBljRBZsGzw6R_0LkzR508_UtAwWolMwUrpGFKKtnteFohcspVrtjKPl0u2cs6aj0-dp3aw5lnxJ8wM0BVIueRvbfx79P-6_gZpoa5E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039193258</pqid></control><display><type>article</type><title>On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Bianchi, Daniela ; Marasco, Addolorata ; Limongiello, Alessandro ; Marchetti, Cristina ; Marie, Helene ; Tirozzi, Brunello ; Migliore, Michele</creator><creatorcontrib>Bianchi, Daniela ; Marasco, Addolorata ; Limongiello, Alessandro ; Marchetti, Cristina ; Marie, Helene ; Tirozzi, Brunello ; Migliore, Michele</creatorcontrib><description>Under sustained input current of increasing strength neurons eventually stop firing, entering a depolarization block. This is a robust effect that is not usually explored in experiments or explicitly implemented or tested in models. However, the range of current strength needed for a depolarization block could be easily reached with a random background activity of only a few hundred excitatory synapses. Depolarization block may thus be an important property of neurons that should be better characterized in experiments and explicitly taken into account in models at all implementation scales. Here we analyze the spiking dynamics of CA1 pyramidal neuron models using the same set of ionic currents on both an accurate morphological reconstruction and on its reduction to a single-compartment. The results show the specific ion channel properties and kinetics that are needed to reproduce the experimental findings, and how their interplay can drastically modulate the neuronal dynamics and the input current range leading to a depolarization block. We suggest that this can be one of the rate-limiting mechanisms protecting a CA1 neuron from excessive spiking activity.</description><identifier>ISSN: 0929-5313</identifier><identifier>EISSN: 1573-6873</identifier><identifier>DOI: 10.1007/s10827-012-0383-y</identifier><identifier>PMID: 22310969</identifier><identifier>CODEN: JCNEFR</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Action Potentials ; Action Potentials - drug effects ; Action Potentials - physiology ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - pharmacology ; Animals ; Animals, Newborn ; Biomedical and Life Sciences ; Biomedicine ; Biophysical Phenomena ; Biophysical Processes ; CA1 Region, Hippocampal ; CA1 Region, Hippocampal - cytology ; CA1 Region, Hippocampal - drug effects ; Computational neuroscience ; Electric Stimulation ; Excitatory Amino Acid Agonists ; Excitatory Amino Acid Agonists - pharmacology ; Firing pattern ; Hippocampus ; Hippocampus - cytology ; Human Genetics ; In Vitro Techniques ; Ion channels ; Kinetics ; Life Sciences ; Models, Neurological ; N-Methylaspartate ; N-Methylaspartate - pharmacology ; Neurology ; Neurons ; Neurons and Cognition ; Neurosciences ; Nonlinear Dynamics ; Patch-Clamp Techniques ; Pyramidal Cells ; Pyramidal Cells - physiology ; Rats ; Rats, Sprague-Dawley ; Synapses ; Synapses - drug effects ; Synapses - physiology ; Synaptic strength ; Theory of Computation</subject><ispartof>Journal of computational neuroscience, 2012-10, Vol.33 (2), p.207-225</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-4560cee92bc080262154adc51fad3ceb1d1793f63adacbe444356cf18027adb23</citedby><cites>FETCH-LOGICAL-c439t-4560cee92bc080262154adc51fad3ceb1d1793f63adacbe444356cf18027adb23</cites><orcidid>0000-0003-3648-9138 ; 0000-0003-2310-6097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10827-012-0383-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10827-012-0383-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22310969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00854872$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bianchi, Daniela</creatorcontrib><creatorcontrib>Marasco, Addolorata</creatorcontrib><creatorcontrib>Limongiello, Alessandro</creatorcontrib><creatorcontrib>Marchetti, Cristina</creatorcontrib><creatorcontrib>Marie, Helene</creatorcontrib><creatorcontrib>Tirozzi, Brunello</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><title>On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons</title><title>Journal of computational neuroscience</title><addtitle>J Comput Neurosci</addtitle><addtitle>J Comput Neurosci</addtitle><description>Under sustained input current of increasing strength neurons eventually stop firing, entering a depolarization block. This is a robust effect that is not usually explored in experiments or explicitly implemented or tested in models. However, the range of current strength needed for a depolarization block could be easily reached with a random background activity of only a few hundred excitatory synapses. Depolarization block may thus be an important property of neurons that should be better characterized in experiments and explicitly taken into account in models at all implementation scales. Here we analyze the spiking dynamics of CA1 pyramidal neuron models using the same set of ionic currents on both an accurate morphological reconstruction and on its reduction to a single-compartment. The results show the specific ion channel properties and kinetics that are needed to reproduce the experimental findings, and how their interplay can drastically modulate the neuronal dynamics and the input current range leading to a depolarization block. We suggest that this can be one of the rate-limiting mechanisms protecting a CA1 neuron from excessive spiking activity.</description><subject>Action Potentials</subject><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid</subject><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - pharmacology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biophysical Phenomena</subject><subject>Biophysical Processes</subject><subject>CA1 Region, Hippocampal</subject><subject>CA1 Region, Hippocampal - cytology</subject><subject>CA1 Region, Hippocampal - drug effects</subject><subject>Computational neuroscience</subject><subject>Electric Stimulation</subject><subject>Excitatory Amino Acid Agonists</subject><subject>Excitatory Amino Acid Agonists - pharmacology</subject><subject>Firing pattern</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Human Genetics</subject><subject>In Vitro Techniques</subject><subject>Ion channels</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Models, Neurological</subject><subject>N-Methylaspartate</subject><subject>N-Methylaspartate - pharmacology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons and Cognition</subject><subject>Neurosciences</subject><subject>Nonlinear Dynamics</subject><subject>Patch-Clamp Techniques</subject><subject>Pyramidal Cells</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Synapses</subject><subject>Synapses - drug effects</subject><subject>Synapses - physiology</subject><subject>Synaptic strength</subject><subject>Theory of Computation</subject><issn>0929-5313</issn><issn>1573-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUFr3DAQhUVpaLZpf0AvRdBLe3CqkWxLPi5LkxQWcknPQpbkrBJbcqV1wP31leM0lEIhJyHN92ZG7yH0Acg5EMK_JiCC8oIALQgTrJhfoQ1UnBW14Ow12pCGNkXFgJ2ityndEUIEB_IGnVLKgDR1s0HdtcfHg8WD1QflXRoSnryxsZ-dv32sGDuGXkX3Sx1d8Ljtg77HblWl0d0vnJm9GpxOOHR4twU8zjHfjeqxt1MMPr1DJ53qk33_dJ6hHxffbnZXxf768vtuuy90yZpjUVY10dY2tNVEEFpTqEpldAWdMkzbFgzwhnU1U0bp1pZlyapad5BZrkxL2Rn6svY9qF6O0Q0qzjIoJ6-2e7m8ZQuqUnD6AJn9vLJjDD8nm45ycEnbvlfehinJ7BAreTaXvQBljRBZsGzw6R_0LkzR508_UtAwWolMwUrpGFKKtnteFohcspVrtjKPl0u2cs6aj0-dp3aw5lnxJ8wM0BVIueRvbfx79P-6_gZpoa5E</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Bianchi, Daniela</creator><creator>Marasco, Addolorata</creator><creator>Limongiello, Alessandro</creator><creator>Marchetti, Cristina</creator><creator>Marie, Helene</creator><creator>Tirozzi, Brunello</creator><creator>Migliore, Michele</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3648-9138</orcidid><orcidid>https://orcid.org/0000-0003-2310-6097</orcidid></search><sort><creationdate>20121001</creationdate><title>On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons</title><author>Bianchi, Daniela ; Marasco, Addolorata ; Limongiello, Alessandro ; Marchetti, Cristina ; Marie, Helene ; Tirozzi, Brunello ; Migliore, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-4560cee92bc080262154adc51fad3ceb1d1793f63adacbe444356cf18027adb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials</topic><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid</topic><topic>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - pharmacology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biophysical Phenomena</topic><topic>Biophysical Processes</topic><topic>CA1 Region, Hippocampal</topic><topic>CA1 Region, Hippocampal - cytology</topic><topic>CA1 Region, Hippocampal - drug effects</topic><topic>Computational neuroscience</topic><topic>Electric Stimulation</topic><topic>Excitatory Amino Acid Agonists</topic><topic>Excitatory Amino Acid Agonists - pharmacology</topic><topic>Firing pattern</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Human Genetics</topic><topic>In Vitro Techniques</topic><topic>Ion channels</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Models, Neurological</topic><topic>N-Methylaspartate</topic><topic>N-Methylaspartate - pharmacology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons and Cognition</topic><topic>Neurosciences</topic><topic>Nonlinear Dynamics</topic><topic>Patch-Clamp Techniques</topic><topic>Pyramidal Cells</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Synapses</topic><topic>Synapses - drug effects</topic><topic>Synapses - physiology</topic><topic>Synaptic strength</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchi, Daniela</creatorcontrib><creatorcontrib>Marasco, Addolorata</creatorcontrib><creatorcontrib>Limongiello, Alessandro</creatorcontrib><creatorcontrib>Marchetti, Cristina</creatorcontrib><creatorcontrib>Marie, Helene</creatorcontrib><creatorcontrib>Tirozzi, Brunello</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchi, Daniela</au><au>Marasco, Addolorata</au><au>Limongiello, Alessandro</au><au>Marchetti, Cristina</au><au>Marie, Helene</au><au>Tirozzi, Brunello</au><au>Migliore, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons</atitle><jtitle>Journal of computational neuroscience</jtitle><stitle>J Comput Neurosci</stitle><addtitle>J Comput Neurosci</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>33</volume><issue>2</issue><spage>207</spage><epage>225</epage><pages>207-225</pages><issn>0929-5313</issn><eissn>1573-6873</eissn><coden>JCNEFR</coden><abstract>Under sustained input current of increasing strength neurons eventually stop firing, entering a depolarization block. This is a robust effect that is not usually explored in experiments or explicitly implemented or tested in models. However, the range of current strength needed for a depolarization block could be easily reached with a random background activity of only a few hundred excitatory synapses. Depolarization block may thus be an important property of neurons that should be better characterized in experiments and explicitly taken into account in models at all implementation scales. Here we analyze the spiking dynamics of CA1 pyramidal neuron models using the same set of ionic currents on both an accurate morphological reconstruction and on its reduction to a single-compartment. The results show the specific ion channel properties and kinetics that are needed to reproduce the experimental findings, and how their interplay can drastically modulate the neuronal dynamics and the input current range leading to a depolarization block. We suggest that this can be one of the rate-limiting mechanisms protecting a CA1 neuron from excessive spiking activity.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>22310969</pmid><doi>10.1007/s10827-012-0383-y</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3648-9138</orcidid><orcidid>https://orcid.org/0000-0003-2310-6097</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-5313
ispartof Journal of computational neuroscience, 2012-10, Vol.33 (2), p.207-225
issn 0929-5313
1573-6873
language eng
recordid cdi_hal_primary_oai_HAL_hal_00854872v1
source MEDLINE; Springer Online Journals Complete
subjects Action Potentials
Action Potentials - drug effects
Action Potentials - physiology
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - pharmacology
Animals
Animals, Newborn
Biomedical and Life Sciences
Biomedicine
Biophysical Phenomena
Biophysical Processes
CA1 Region, Hippocampal
CA1 Region, Hippocampal - cytology
CA1 Region, Hippocampal - drug effects
Computational neuroscience
Electric Stimulation
Excitatory Amino Acid Agonists
Excitatory Amino Acid Agonists - pharmacology
Firing pattern
Hippocampus
Hippocampus - cytology
Human Genetics
In Vitro Techniques
Ion channels
Kinetics
Life Sciences
Models, Neurological
N-Methylaspartate
N-Methylaspartate - pharmacology
Neurology
Neurons
Neurons and Cognition
Neurosciences
Nonlinear Dynamics
Patch-Clamp Techniques
Pyramidal Cells
Pyramidal Cells - physiology
Rats
Rats, Sprague-Dawley
Synapses
Synapses - drug effects
Synapses - physiology
Synaptic strength
Theory of Computation
title On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20mechanisms%20underlying%20the%20depolarization%20block%20in%20the%20spiking%20dynamics%20of%20CA1%20pyramidal%20neurons&rft.jtitle=Journal%20of%20computational%20neuroscience&rft.au=Bianchi,%20Daniela&rft.date=2012-10-01&rft.volume=33&rft.issue=2&rft.spage=207&rft.epage=225&rft.pages=207-225&rft.issn=0929-5313&rft.eissn=1573-6873&rft.coden=JCNEFR&rft_id=info:doi/10.1007/s10827-012-0383-y&rft_dat=%3Cproquest_hal_p%3E1039881092%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039193258&rft_id=info:pmid/22310969&rfr_iscdi=true