Predicting multiple step placements for human balance recovery tasks
Abstract Stepping is one of the predominant strategies to restore balance against an external perturbation. Although models have been proposed to estimate the recovery step placement for a given perturbation, they suffer from major limitations (step execution time usually neglected, no more than a s...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2012-11, Vol.45 (16), p.2804-2809 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2809 |
---|---|
container_issue | 16 |
container_start_page | 2804 |
container_title | Journal of biomechanics |
container_volume | 45 |
creator | Aftab, Zohaib Robert, Thomas Wieber, Pierre-Brice |
description | Abstract Stepping is one of the predominant strategies to restore balance against an external perturbation. Although models have been proposed to estimate the recovery step placement for a given perturbation, they suffer from major limitations (step execution time usually neglected, no more than a single step recovery considered, etc.). The purpose of this study is to overcome these limitations and to develop a simple balance recovery model which can predict a complete multiple step recovery response. Inspired by the field of walking robots, we adapted a control scheme formerly proposed for biped robot locomotion. The scheme relies on a Linear Model Predictive Controller (LMPC) which estimates the best foot placements to zero the velocity of the Center of Mass (CoM), i.e. to reach a steady posture. The predicted step placements were compared against previously reported experimental data for tether-release conditions. They match correctly for various perturbation levels and both single step or multiple steps recovery. Although the current model still suffers from limitations (e.g., limited to the sagittal plane), these results demonstrate its ability to reproduce balance recovery reactions for different experimental scenarios. |
doi_str_mv | 10.1016/j.jbiomech.2012.08.038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00850934v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929012005064</els_id><sourcerecordid>1475552740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-3dbdf94eb72b3496d9bbb941585fc29d3e86f018402c5291b941a8fab2fb6f443</originalsourceid><addsrcrecordid>eNqFkl1r2zAUhs3YWNNuf6EYxmC9cHb0YVm6GSvdRweBDbZdC0k-XpT6I5XsQP79ZJK20JtcCaTnHJ1Xj7LsksCSABEfN8uN9UOHbr2kQOgS5BKYfJEtiKxYQZmEl9kCgJJCUQVn2XmMGwCoeKVeZ2eUKqVYVS2yL78C1t6Nvv-Xd1M7-m2LeRxxm29b47DDfox5M4R8PXWmz61pTe8wD-iGHYZ9Ppp4F99krxrTRnx7XC-yv9--_rm5LVY_v_-4uV4VTvBqLFht60ZxtBW1jCtRK2ut4qSUZeOoqhlK0QCRHKgrqSLzmZGNsbSxouGcXWRXh75r0-pt8J0Jez0Yr2-vV3reA5AlKMZ3JLEfDuw2DPcTxlF3Pjps0_w4TFETXpVlSSsOp1EqmRBSivI0SlIczqSqEvruGboZptCn90kUU5RSweZI4kC5MMQYsHnMRUDPpvVGP5jWs2kNUifTqfDy2H6yHdaPZQ9qE_D-CJjoTNuEJM7HJ06USjI2R_p84DCZ23kMOjqPSXLtk-VR14M_PcunZy1c63ufbr3DPcan3DqmGv17_pfztyQUoATB2X8artwb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1139222634</pqid></control><display><type>article</type><title>Predicting multiple step placements for human balance recovery tasks</title><source>ScienceDirect</source><source>MEDLINE</source><source>ProQuest Central</source><creator>Aftab, Zohaib ; Robert, Thomas ; Wieber, Pierre-Brice</creator><creatorcontrib>Aftab, Zohaib ; Robert, Thomas ; Wieber, Pierre-Brice</creatorcontrib><description>Abstract Stepping is one of the predominant strategies to restore balance against an external perturbation. Although models have been proposed to estimate the recovery step placement for a given perturbation, they suffer from major limitations (step execution time usually neglected, no more than a single step recovery considered, etc.). The purpose of this study is to overcome these limitations and to develop a simple balance recovery model which can predict a complete multiple step recovery response. Inspired by the field of walking robots, we adapted a control scheme formerly proposed for biped robot locomotion. The scheme relies on a Linear Model Predictive Controller (LMPC) which estimates the best foot placements to zero the velocity of the Center of Mass (CoM), i.e. to reach a steady posture. The predicted step placements were compared against previously reported experimental data for tether-release conditions. They match correctly for various perturbation levels and both single step or multiple steps recovery. Although the current model still suffers from limitations (e.g., limited to the sagittal plane), these results demonstrate its ability to reproduce balance recovery reactions for different experimental scenarios.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2012.08.038</identifier><identifier>PMID: 22999377</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Ankle ; Balance recovery ; Biological and medical sciences ; Biomechanical Phenomena ; Estimates ; Fall ; Fundamental and applied biological sciences. Psychology ; Human body ; Human health and pathology ; Humans ; Life Sciences ; Mathematical models ; Model predictive control ; Models, Biological ; Perturbation methods ; Physical Medicine and Rehabilitation ; Placement ; Postural Balance - physiology ; Recovery ; Robots ; Simulation ; Stepping ; Strategy ; Tasks ; Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports ; Walking - physiology</subject><ispartof>Journal of biomechanics, 2012-11, Vol.45 (16), p.2804-2809</ispartof><rights>Elsevier Ltd</rights><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-3dbdf94eb72b3496d9bbb941585fc29d3e86f018402c5291b941a8fab2fb6f443</citedby><cites>FETCH-LOGICAL-c647t-3dbdf94eb72b3496d9bbb941585fc29d3e86f018402c5291b941a8fab2fb6f443</cites><orcidid>0000-0002-5106-929X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1139222634?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26598335$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22999377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00850934$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aftab, Zohaib</creatorcontrib><creatorcontrib>Robert, Thomas</creatorcontrib><creatorcontrib>Wieber, Pierre-Brice</creatorcontrib><title>Predicting multiple step placements for human balance recovery tasks</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Stepping is one of the predominant strategies to restore balance against an external perturbation. Although models have been proposed to estimate the recovery step placement for a given perturbation, they suffer from major limitations (step execution time usually neglected, no more than a single step recovery considered, etc.). The purpose of this study is to overcome these limitations and to develop a simple balance recovery model which can predict a complete multiple step recovery response. Inspired by the field of walking robots, we adapted a control scheme formerly proposed for biped robot locomotion. The scheme relies on a Linear Model Predictive Controller (LMPC) which estimates the best foot placements to zero the velocity of the Center of Mass (CoM), i.e. to reach a steady posture. The predicted step placements were compared against previously reported experimental data for tether-release conditions. They match correctly for various perturbation levels and both single step or multiple steps recovery. Although the current model still suffers from limitations (e.g., limited to the sagittal plane), these results demonstrate its ability to reproduce balance recovery reactions for different experimental scenarios.</description><subject>Ankle</subject><subject>Balance recovery</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Estimates</subject><subject>Fall</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human body</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Model predictive control</subject><subject>Models, Biological</subject><subject>Perturbation methods</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Placement</subject><subject>Postural Balance - physiology</subject><subject>Recovery</subject><subject>Robots</subject><subject>Simulation</subject><subject>Stepping</subject><subject>Strategy</subject><subject>Tasks</subject><subject>Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</subject><subject>Walking - physiology</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkl1r2zAUhs3YWNNuf6EYxmC9cHb0YVm6GSvdRweBDbZdC0k-XpT6I5XsQP79ZJK20JtcCaTnHJ1Xj7LsksCSABEfN8uN9UOHbr2kQOgS5BKYfJEtiKxYQZmEl9kCgJJCUQVn2XmMGwCoeKVeZ2eUKqVYVS2yL78C1t6Nvv-Xd1M7-m2LeRxxm29b47DDfox5M4R8PXWmz61pTe8wD-iGHYZ9Ppp4F99krxrTRnx7XC-yv9--_rm5LVY_v_-4uV4VTvBqLFht60ZxtBW1jCtRK2ut4qSUZeOoqhlK0QCRHKgrqSLzmZGNsbSxouGcXWRXh75r0-pt8J0Jez0Yr2-vV3reA5AlKMZ3JLEfDuw2DPcTxlF3Pjps0_w4TFETXpVlSSsOp1EqmRBSivI0SlIczqSqEvruGboZptCn90kUU5RSweZI4kC5MMQYsHnMRUDPpvVGP5jWs2kNUifTqfDy2H6yHdaPZQ9qE_D-CJjoTNuEJM7HJ06USjI2R_p84DCZ23kMOjqPSXLtk-VR14M_PcunZy1c63ufbr3DPcan3DqmGv17_pfztyQUoATB2X8artwb</recordid><startdate>20121115</startdate><enddate>20121115</enddate><creator>Aftab, Zohaib</creator><creator>Robert, Thomas</creator><creator>Wieber, Pierre-Brice</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5106-929X</orcidid></search><sort><creationdate>20121115</creationdate><title>Predicting multiple step placements for human balance recovery tasks</title><author>Aftab, Zohaib ; Robert, Thomas ; Wieber, Pierre-Brice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-3dbdf94eb72b3496d9bbb941585fc29d3e86f018402c5291b941a8fab2fb6f443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ankle</topic><topic>Balance recovery</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Estimates</topic><topic>Fall</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human body</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Model predictive control</topic><topic>Models, Biological</topic><topic>Perturbation methods</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Placement</topic><topic>Postural Balance - physiology</topic><topic>Recovery</topic><topic>Robots</topic><topic>Simulation</topic><topic>Stepping</topic><topic>Strategy</topic><topic>Tasks</topic><topic>Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aftab, Zohaib</creatorcontrib><creatorcontrib>Robert, Thomas</creatorcontrib><creatorcontrib>Wieber, Pierre-Brice</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aftab, Zohaib</au><au>Robert, Thomas</au><au>Wieber, Pierre-Brice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting multiple step placements for human balance recovery tasks</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2012-11-15</date><risdate>2012</risdate><volume>45</volume><issue>16</issue><spage>2804</spage><epage>2809</epage><pages>2804-2809</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Stepping is one of the predominant strategies to restore balance against an external perturbation. Although models have been proposed to estimate the recovery step placement for a given perturbation, they suffer from major limitations (step execution time usually neglected, no more than a single step recovery considered, etc.). The purpose of this study is to overcome these limitations and to develop a simple balance recovery model which can predict a complete multiple step recovery response. Inspired by the field of walking robots, we adapted a control scheme formerly proposed for biped robot locomotion. The scheme relies on a Linear Model Predictive Controller (LMPC) which estimates the best foot placements to zero the velocity of the Center of Mass (CoM), i.e. to reach a steady posture. The predicted step placements were compared against previously reported experimental data for tether-release conditions. They match correctly for various perturbation levels and both single step or multiple steps recovery. Although the current model still suffers from limitations (e.g., limited to the sagittal plane), these results demonstrate its ability to reproduce balance recovery reactions for different experimental scenarios.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22999377</pmid><doi>10.1016/j.jbiomech.2012.08.038</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5106-929X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2012-11, Vol.45 (16), p.2804-2809 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00850934v1 |
source | ScienceDirect; MEDLINE; ProQuest Central |
subjects | Ankle Balance recovery Biological and medical sciences Biomechanical Phenomena Estimates Fall Fundamental and applied biological sciences. Psychology Human body Human health and pathology Humans Life Sciences Mathematical models Model predictive control Models, Biological Perturbation methods Physical Medicine and Rehabilitation Placement Postural Balance - physiology Recovery Robots Simulation Stepping Strategy Tasks Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports Walking - physiology |
title | Predicting multiple step placements for human balance recovery tasks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20multiple%20step%20placements%20for%20human%20balance%20recovery%20tasks&rft.jtitle=Journal%20of%20biomechanics&rft.au=Aftab,%20Zohaib&rft.date=2012-11-15&rft.volume=45&rft.issue=16&rft.spage=2804&rft.epage=2809&rft.pages=2804-2809&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2012.08.038&rft_dat=%3Cproquest_hal_p%3E1475552740%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1139222634&rft_id=info:pmid/22999377&rft_els_id=1_s2_0_S0021929012005064&rfr_iscdi=true |