Predicting multiple step placements for human balance recovery tasks

Abstract Stepping is one of the predominant strategies to restore balance against an external perturbation. Although models have been proposed to estimate the recovery step placement for a given perturbation, they suffer from major limitations (step execution time usually neglected, no more than a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2012-11, Vol.45 (16), p.2804-2809
Hauptverfasser: Aftab, Zohaib, Robert, Thomas, Wieber, Pierre-Brice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2809
container_issue 16
container_start_page 2804
container_title Journal of biomechanics
container_volume 45
creator Aftab, Zohaib
Robert, Thomas
Wieber, Pierre-Brice
description Abstract Stepping is one of the predominant strategies to restore balance against an external perturbation. Although models have been proposed to estimate the recovery step placement for a given perturbation, they suffer from major limitations (step execution time usually neglected, no more than a single step recovery considered, etc.). The purpose of this study is to overcome these limitations and to develop a simple balance recovery model which can predict a complete multiple step recovery response. Inspired by the field of walking robots, we adapted a control scheme formerly proposed for biped robot locomotion. The scheme relies on a Linear Model Predictive Controller (LMPC) which estimates the best foot placements to zero the velocity of the Center of Mass (CoM), i.e. to reach a steady posture. The predicted step placements were compared against previously reported experimental data for tether-release conditions. They match correctly for various perturbation levels and both single step or multiple steps recovery. Although the current model still suffers from limitations (e.g., limited to the sagittal plane), these results demonstrate its ability to reproduce balance recovery reactions for different experimental scenarios.
doi_str_mv 10.1016/j.jbiomech.2012.08.038
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00850934v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929012005064</els_id><sourcerecordid>1475552740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-3dbdf94eb72b3496d9bbb941585fc29d3e86f018402c5291b941a8fab2fb6f443</originalsourceid><addsrcrecordid>eNqFkl1r2zAUhs3YWNNuf6EYxmC9cHb0YVm6GSvdRweBDbZdC0k-XpT6I5XsQP79ZJK20JtcCaTnHJ1Xj7LsksCSABEfN8uN9UOHbr2kQOgS5BKYfJEtiKxYQZmEl9kCgJJCUQVn2XmMGwCoeKVeZ2eUKqVYVS2yL78C1t6Nvv-Xd1M7-m2LeRxxm29b47DDfox5M4R8PXWmz61pTe8wD-iGHYZ9Ppp4F99krxrTRnx7XC-yv9--_rm5LVY_v_-4uV4VTvBqLFht60ZxtBW1jCtRK2ut4qSUZeOoqhlK0QCRHKgrqSLzmZGNsbSxouGcXWRXh75r0-pt8J0Jez0Yr2-vV3reA5AlKMZ3JLEfDuw2DPcTxlF3Pjps0_w4TFETXpVlSSsOp1EqmRBSivI0SlIczqSqEvruGboZptCn90kUU5RSweZI4kC5MMQYsHnMRUDPpvVGP5jWs2kNUifTqfDy2H6yHdaPZQ9qE_D-CJjoTNuEJM7HJ06USjI2R_p84DCZ23kMOjqPSXLtk-VR14M_PcunZy1c63ufbr3DPcan3DqmGv17_pfztyQUoATB2X8artwb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1139222634</pqid></control><display><type>article</type><title>Predicting multiple step placements for human balance recovery tasks</title><source>ScienceDirect</source><source>MEDLINE</source><source>ProQuest Central</source><creator>Aftab, Zohaib ; Robert, Thomas ; Wieber, Pierre-Brice</creator><creatorcontrib>Aftab, Zohaib ; Robert, Thomas ; Wieber, Pierre-Brice</creatorcontrib><description>Abstract Stepping is one of the predominant strategies to restore balance against an external perturbation. Although models have been proposed to estimate the recovery step placement for a given perturbation, they suffer from major limitations (step execution time usually neglected, no more than a single step recovery considered, etc.). The purpose of this study is to overcome these limitations and to develop a simple balance recovery model which can predict a complete multiple step recovery response. Inspired by the field of walking robots, we adapted a control scheme formerly proposed for biped robot locomotion. The scheme relies on a Linear Model Predictive Controller (LMPC) which estimates the best foot placements to zero the velocity of the Center of Mass (CoM), i.e. to reach a steady posture. The predicted step placements were compared against previously reported experimental data for tether-release conditions. They match correctly for various perturbation levels and both single step or multiple steps recovery. Although the current model still suffers from limitations (e.g., limited to the sagittal plane), these results demonstrate its ability to reproduce balance recovery reactions for different experimental scenarios.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2012.08.038</identifier><identifier>PMID: 22999377</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Ankle ; Balance recovery ; Biological and medical sciences ; Biomechanical Phenomena ; Estimates ; Fall ; Fundamental and applied biological sciences. Psychology ; Human body ; Human health and pathology ; Humans ; Life Sciences ; Mathematical models ; Model predictive control ; Models, Biological ; Perturbation methods ; Physical Medicine and Rehabilitation ; Placement ; Postural Balance - physiology ; Recovery ; Robots ; Simulation ; Stepping ; Strategy ; Tasks ; Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports ; Walking - physiology</subject><ispartof>Journal of biomechanics, 2012-11, Vol.45 (16), p.2804-2809</ispartof><rights>Elsevier Ltd</rights><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-3dbdf94eb72b3496d9bbb941585fc29d3e86f018402c5291b941a8fab2fb6f443</citedby><cites>FETCH-LOGICAL-c647t-3dbdf94eb72b3496d9bbb941585fc29d3e86f018402c5291b941a8fab2fb6f443</cites><orcidid>0000-0002-5106-929X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1139222634?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26598335$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22999377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00850934$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aftab, Zohaib</creatorcontrib><creatorcontrib>Robert, Thomas</creatorcontrib><creatorcontrib>Wieber, Pierre-Brice</creatorcontrib><title>Predicting multiple step placements for human balance recovery tasks</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Stepping is one of the predominant strategies to restore balance against an external perturbation. Although models have been proposed to estimate the recovery step placement for a given perturbation, they suffer from major limitations (step execution time usually neglected, no more than a single step recovery considered, etc.). The purpose of this study is to overcome these limitations and to develop a simple balance recovery model which can predict a complete multiple step recovery response. Inspired by the field of walking robots, we adapted a control scheme formerly proposed for biped robot locomotion. The scheme relies on a Linear Model Predictive Controller (LMPC) which estimates the best foot placements to zero the velocity of the Center of Mass (CoM), i.e. to reach a steady posture. The predicted step placements were compared against previously reported experimental data for tether-release conditions. They match correctly for various perturbation levels and both single step or multiple steps recovery. Although the current model still suffers from limitations (e.g., limited to the sagittal plane), these results demonstrate its ability to reproduce balance recovery reactions for different experimental scenarios.</description><subject>Ankle</subject><subject>Balance recovery</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Estimates</subject><subject>Fall</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human body</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Model predictive control</subject><subject>Models, Biological</subject><subject>Perturbation methods</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Placement</subject><subject>Postural Balance - physiology</subject><subject>Recovery</subject><subject>Robots</subject><subject>Simulation</subject><subject>Stepping</subject><subject>Strategy</subject><subject>Tasks</subject><subject>Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</subject><subject>Walking - physiology</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkl1r2zAUhs3YWNNuf6EYxmC9cHb0YVm6GSvdRweBDbZdC0k-XpT6I5XsQP79ZJK20JtcCaTnHJ1Xj7LsksCSABEfN8uN9UOHbr2kQOgS5BKYfJEtiKxYQZmEl9kCgJJCUQVn2XmMGwCoeKVeZ2eUKqVYVS2yL78C1t6Nvv-Xd1M7-m2LeRxxm29b47DDfox5M4R8PXWmz61pTe8wD-iGHYZ9Ppp4F99krxrTRnx7XC-yv9--_rm5LVY_v_-4uV4VTvBqLFht60ZxtBW1jCtRK2ut4qSUZeOoqhlK0QCRHKgrqSLzmZGNsbSxouGcXWRXh75r0-pt8J0Jez0Yr2-vV3reA5AlKMZ3JLEfDuw2DPcTxlF3Pjps0_w4TFETXpVlSSsOp1EqmRBSivI0SlIczqSqEvruGboZptCn90kUU5RSweZI4kC5MMQYsHnMRUDPpvVGP5jWs2kNUifTqfDy2H6yHdaPZQ9qE_D-CJjoTNuEJM7HJ06USjI2R_p84DCZ23kMOjqPSXLtk-VR14M_PcunZy1c63ufbr3DPcan3DqmGv17_pfztyQUoATB2X8artwb</recordid><startdate>20121115</startdate><enddate>20121115</enddate><creator>Aftab, Zohaib</creator><creator>Robert, Thomas</creator><creator>Wieber, Pierre-Brice</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5106-929X</orcidid></search><sort><creationdate>20121115</creationdate><title>Predicting multiple step placements for human balance recovery tasks</title><author>Aftab, Zohaib ; Robert, Thomas ; Wieber, Pierre-Brice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-3dbdf94eb72b3496d9bbb941585fc29d3e86f018402c5291b941a8fab2fb6f443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ankle</topic><topic>Balance recovery</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Estimates</topic><topic>Fall</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human body</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Model predictive control</topic><topic>Models, Biological</topic><topic>Perturbation methods</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Placement</topic><topic>Postural Balance - physiology</topic><topic>Recovery</topic><topic>Robots</topic><topic>Simulation</topic><topic>Stepping</topic><topic>Strategy</topic><topic>Tasks</topic><topic>Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aftab, Zohaib</creatorcontrib><creatorcontrib>Robert, Thomas</creatorcontrib><creatorcontrib>Wieber, Pierre-Brice</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aftab, Zohaib</au><au>Robert, Thomas</au><au>Wieber, Pierre-Brice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting multiple step placements for human balance recovery tasks</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2012-11-15</date><risdate>2012</risdate><volume>45</volume><issue>16</issue><spage>2804</spage><epage>2809</epage><pages>2804-2809</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Stepping is one of the predominant strategies to restore balance against an external perturbation. Although models have been proposed to estimate the recovery step placement for a given perturbation, they suffer from major limitations (step execution time usually neglected, no more than a single step recovery considered, etc.). The purpose of this study is to overcome these limitations and to develop a simple balance recovery model which can predict a complete multiple step recovery response. Inspired by the field of walking robots, we adapted a control scheme formerly proposed for biped robot locomotion. The scheme relies on a Linear Model Predictive Controller (LMPC) which estimates the best foot placements to zero the velocity of the Center of Mass (CoM), i.e. to reach a steady posture. The predicted step placements were compared against previously reported experimental data for tether-release conditions. They match correctly for various perturbation levels and both single step or multiple steps recovery. Although the current model still suffers from limitations (e.g., limited to the sagittal plane), these results demonstrate its ability to reproduce balance recovery reactions for different experimental scenarios.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22999377</pmid><doi>10.1016/j.jbiomech.2012.08.038</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5106-929X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2012-11, Vol.45 (16), p.2804-2809
issn 0021-9290
1873-2380
language eng
recordid cdi_hal_primary_oai_HAL_hal_00850934v1
source ScienceDirect; MEDLINE; ProQuest Central
subjects Ankle
Balance recovery
Biological and medical sciences
Biomechanical Phenomena
Estimates
Fall
Fundamental and applied biological sciences. Psychology
Human body
Human health and pathology
Humans
Life Sciences
Mathematical models
Model predictive control
Models, Biological
Perturbation methods
Physical Medicine and Rehabilitation
Placement
Postural Balance - physiology
Recovery
Robots
Simulation
Stepping
Strategy
Tasks
Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports
Walking - physiology
title Predicting multiple step placements for human balance recovery tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20multiple%20step%20placements%20for%20human%20balance%20recovery%20tasks&rft.jtitle=Journal%20of%20biomechanics&rft.au=Aftab,%20Zohaib&rft.date=2012-11-15&rft.volume=45&rft.issue=16&rft.spage=2804&rft.epage=2809&rft.pages=2804-2809&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2012.08.038&rft_dat=%3Cproquest_hal_p%3E1475552740%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1139222634&rft_id=info:pmid/22999377&rft_els_id=1_s2_0_S0021929012005064&rfr_iscdi=true