Zinc incorporation into CdTe quantum dots in glass

We report zinc incorporation into CdTe nanoparticles grown by two-step solid phase precipitation in commercial borosilicate glass quenched from the melt, based on a co-evaluation of the results of resonant Raman and optical absorption measurements. Resonant Raman spectra display a two-peak structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry and physics 2010-01, Vol.119 (1), p.218-221
Hauptverfasser: Yükselici, M.H., Allahverdi, Ç., Athalin, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 1
container_start_page 218
container_title Materials chemistry and physics
container_volume 119
creator Yükselici, M.H.
Allahverdi, Ç.
Athalin, H.
description We report zinc incorporation into CdTe nanoparticles grown by two-step solid phase precipitation in commercial borosilicate glass quenched from the melt, based on a co-evaluation of the results of resonant Raman and optical absorption measurements. Resonant Raman spectra display a two-peak structure at wave-number positions corresponding to ternary compound Zn x Cd 1− x Te. We attribute the higher intensity peak between 190 and 195 cm −1 to the first harmonic of the zone-center longitudinal optical mode (LO 1) and, the lower intensity peak between 157 and 160 cm −1 to the second harmonic (LO 2) of Zn x Cd 1− x Te crystal. The wave-number of vibrational Raman modes indicates that zinc content varies between 39 and 50% during the growth of quantum dots. The asymptotic absorption edge against heat-treatment time plot extrapolates to a bulk band gap of 1.714 eV which sets a lower limit of 31% for zinc incorporated into quantum dots which is consistent with the results of resonant Raman measurements. The energetic position of asymptotic absorption edge of 1.592 eV and an additional unresolved weak structure in Raman spectrum between 166 and 182 cm −1 observed for as-received glass might serve as a evidence for the occurrence of a different nanocrystalline phase with 13% zinc content.
doi_str_mv 10.1016/j.matchemphys.2009.08.057
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00849344v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058409005343</els_id><sourcerecordid>35067474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-ece5d743df09778b344a3e317e67df23d4abbf735af9d612821ff314897eebee3</originalsourceid><addsrcrecordid>eNqNkMFLwzAUxoMoOKf_Q70IHlqTJm3S4xjqhIGXefES0uTVZbRNl7SD_fdmTMSjh8fjfXzv470fQvcEZwST8mmXdWrUW-iG7TFkOcZVhkWGC36BZkTwKqWU5JdohvOCpbgQ7BrdhLDDmHBC6Azln7bXSSznB-fVaF0fp9ElS7OBZD-pfpy6xLgxRDn5alUIt-iqUW2Au58-Rx8vz5vlKl2_v74tF-tUU1GOKWgoDGfUNLjiXNSUMUWBEg4lN01ODVN13XBaqKYyJclFTpqGEiYqDlAD0Dl6POduVSsHbzvlj9IpK1eLtTxpGAtWxdgDid6Hs3fwbj9BGGVng4a2VT24KUha4JKzeM0cVWej9i4ED81vMsHyRFTu5B-i8kRUYiEj0bi7PO9C_PpgwcugLfQajPWgR2mc_UfKN2DWhNY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35067474</pqid></control><display><type>article</type><title>Zinc incorporation into CdTe quantum dots in glass</title><source>Elsevier ScienceDirect Journals</source><creator>Yükselici, M.H. ; Allahverdi, Ç. ; Athalin, H.</creator><creatorcontrib>Yükselici, M.H. ; Allahverdi, Ç. ; Athalin, H.</creatorcontrib><description>We report zinc incorporation into CdTe nanoparticles grown by two-step solid phase precipitation in commercial borosilicate glass quenched from the melt, based on a co-evaluation of the results of resonant Raman and optical absorption measurements. Resonant Raman spectra display a two-peak structure at wave-number positions corresponding to ternary compound Zn x Cd 1− x Te. We attribute the higher intensity peak between 190 and 195 cm −1 to the first harmonic of the zone-center longitudinal optical mode (LO 1) and, the lower intensity peak between 157 and 160 cm −1 to the second harmonic (LO 2) of Zn x Cd 1− x Te crystal. The wave-number of vibrational Raman modes indicates that zinc content varies between 39 and 50% during the growth of quantum dots. The asymptotic absorption edge against heat-treatment time plot extrapolates to a bulk band gap of 1.714 eV which sets a lower limit of 31% for zinc incorporated into quantum dots which is consistent with the results of resonant Raman measurements. The energetic position of asymptotic absorption edge of 1.592 eV and an additional unresolved weak structure in Raman spectrum between 166 and 182 cm −1 observed for as-received glass might serve as a evidence for the occurrence of a different nanocrystalline phase with 13% zinc content.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2009.08.057</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>CdTe nanocrystals ; Condensed Matter ; Materials Science ; Physics ; Quantum dots ; Resonant Raman spectroscopy ; Zinc incorporation</subject><ispartof>Materials chemistry and physics, 2010-01, Vol.119 (1), p.218-221</ispartof><rights>2009 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-ece5d743df09778b344a3e317e67df23d4abbf735af9d612821ff314897eebee3</citedby><cites>FETCH-LOGICAL-c386t-ece5d743df09778b344a3e317e67df23d4abbf735af9d612821ff314897eebee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0254058409005343$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00849344$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yükselici, M.H.</creatorcontrib><creatorcontrib>Allahverdi, Ç.</creatorcontrib><creatorcontrib>Athalin, H.</creatorcontrib><title>Zinc incorporation into CdTe quantum dots in glass</title><title>Materials chemistry and physics</title><description>We report zinc incorporation into CdTe nanoparticles grown by two-step solid phase precipitation in commercial borosilicate glass quenched from the melt, based on a co-evaluation of the results of resonant Raman and optical absorption measurements. Resonant Raman spectra display a two-peak structure at wave-number positions corresponding to ternary compound Zn x Cd 1− x Te. We attribute the higher intensity peak between 190 and 195 cm −1 to the first harmonic of the zone-center longitudinal optical mode (LO 1) and, the lower intensity peak between 157 and 160 cm −1 to the second harmonic (LO 2) of Zn x Cd 1− x Te crystal. The wave-number of vibrational Raman modes indicates that zinc content varies between 39 and 50% during the growth of quantum dots. The asymptotic absorption edge against heat-treatment time plot extrapolates to a bulk band gap of 1.714 eV which sets a lower limit of 31% for zinc incorporated into quantum dots which is consistent with the results of resonant Raman measurements. The energetic position of asymptotic absorption edge of 1.592 eV and an additional unresolved weak structure in Raman spectrum between 166 and 182 cm −1 observed for as-received glass might serve as a evidence for the occurrence of a different nanocrystalline phase with 13% zinc content.</description><subject>CdTe nanocrystals</subject><subject>Condensed Matter</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Resonant Raman spectroscopy</subject><subject>Zinc incorporation</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkMFLwzAUxoMoOKf_Q70IHlqTJm3S4xjqhIGXefES0uTVZbRNl7SD_fdmTMSjh8fjfXzv470fQvcEZwST8mmXdWrUW-iG7TFkOcZVhkWGC36BZkTwKqWU5JdohvOCpbgQ7BrdhLDDmHBC6Azln7bXSSznB-fVaF0fp9ElS7OBZD-pfpy6xLgxRDn5alUIt-iqUW2Au58-Rx8vz5vlKl2_v74tF-tUU1GOKWgoDGfUNLjiXNSUMUWBEg4lN01ODVN13XBaqKYyJclFTpqGEiYqDlAD0Dl6POduVSsHbzvlj9IpK1eLtTxpGAtWxdgDid6Hs3fwbj9BGGVng4a2VT24KUha4JKzeM0cVWej9i4ED81vMsHyRFTu5B-i8kRUYiEj0bi7PO9C_PpgwcugLfQajPWgR2mc_UfKN2DWhNY</recordid><startdate>20100115</startdate><enddate>20100115</enddate><creator>Yükselici, M.H.</creator><creator>Allahverdi, Ç.</creator><creator>Athalin, H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20100115</creationdate><title>Zinc incorporation into CdTe quantum dots in glass</title><author>Yükselici, M.H. ; Allahverdi, Ç. ; Athalin, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-ece5d743df09778b344a3e317e67df23d4abbf735af9d612821ff314897eebee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>CdTe nanocrystals</topic><topic>Condensed Matter</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Resonant Raman spectroscopy</topic><topic>Zinc incorporation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yükselici, M.H.</creatorcontrib><creatorcontrib>Allahverdi, Ç.</creatorcontrib><creatorcontrib>Athalin, H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yükselici, M.H.</au><au>Allahverdi, Ç.</au><au>Athalin, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc incorporation into CdTe quantum dots in glass</atitle><jtitle>Materials chemistry and physics</jtitle><date>2010-01-15</date><risdate>2010</risdate><volume>119</volume><issue>1</issue><spage>218</spage><epage>221</epage><pages>218-221</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>We report zinc incorporation into CdTe nanoparticles grown by two-step solid phase precipitation in commercial borosilicate glass quenched from the melt, based on a co-evaluation of the results of resonant Raman and optical absorption measurements. Resonant Raman spectra display a two-peak structure at wave-number positions corresponding to ternary compound Zn x Cd 1− x Te. We attribute the higher intensity peak between 190 and 195 cm −1 to the first harmonic of the zone-center longitudinal optical mode (LO 1) and, the lower intensity peak between 157 and 160 cm −1 to the second harmonic (LO 2) of Zn x Cd 1− x Te crystal. The wave-number of vibrational Raman modes indicates that zinc content varies between 39 and 50% during the growth of quantum dots. The asymptotic absorption edge against heat-treatment time plot extrapolates to a bulk band gap of 1.714 eV which sets a lower limit of 31% for zinc incorporated into quantum dots which is consistent with the results of resonant Raman measurements. The energetic position of asymptotic absorption edge of 1.592 eV and an additional unresolved weak structure in Raman spectrum between 166 and 182 cm −1 observed for as-received glass might serve as a evidence for the occurrence of a different nanocrystalline phase with 13% zinc content.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2009.08.057</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2010-01, Vol.119 (1), p.218-221
issn 0254-0584
1879-3312
language eng
recordid cdi_hal_primary_oai_HAL_hal_00849344v1
source Elsevier ScienceDirect Journals
subjects CdTe nanocrystals
Condensed Matter
Materials Science
Physics
Quantum dots
Resonant Raman spectroscopy
Zinc incorporation
title Zinc incorporation into CdTe quantum dots in glass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%20incorporation%20into%20CdTe%20quantum%20dots%20in%20glass&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Y%C3%BCkselici,%20M.H.&rft.date=2010-01-15&rft.volume=119&rft.issue=1&rft.spage=218&rft.epage=221&rft.pages=218-221&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2009.08.057&rft_dat=%3Cproquest_hal_p%3E35067474%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35067474&rft_id=info:pmid/&rft_els_id=S0254058409005343&rfr_iscdi=true