Stratified critical points on the real Milnor fibre and integral-geometric formulas

Let $(X,0) \subset (\mathbb{R}^n,0)$ be the germ of a closed subanalytic set and let $f$ and $g : (X,0) \rightarrow (\mathbb{R},0)$ be two subanalytic functions. Under some conditions, we relate the critical points of $g$ on the real Milnor fibre $X \cap f^{-1}(\delta) \cap B_\epsilon$, $0 < \ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of singularities 2015, Vol.13
1. Verfasser: Dutertre, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $(X,0) \subset (\mathbb{R}^n,0)$ be the germ of a closed subanalytic set and let $f$ and $g : (X,0) \rightarrow (\mathbb{R},0)$ be two subanalytic functions. Under some conditions, we relate the critical points of $g$ on the real Milnor fibre $X \cap f^{-1}(\delta) \cap B_\epsilon$, $0 < \vert \delta \vert \ll \epsilon \ll 1$, to the topology of this fibre and other related subanalytic sets. As an application, when $g$ is a generic linear function, we obtain an ''asymptotic" Gauss-Bonnet formula for the real Milnor fibre of $f$. From this Gauss-Bonnet formula, we deduce ''infinitesimal" linear kinematic formulas.
ISSN:1949-2006
1949-2006
DOI:10.5427/jsing.2015.13e