Durable strategies to deploy plant resistance in agricultural landscapes

The deployment of resistant crops often leads to the emergence of resistance-breaking pathogens that suppress the yield benefit provided by the resistance. Here, we theoretically explored how farmers' main leverages (resistant cultivar choice, resistance deployment strategy, landscape planning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2012-03, Vol.193 (4), p.1064-1075
Hauptverfasser: Fabre, Frédéric, Rousseau, Elsa, Mailleret, Ludovic, Moury, Benoit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1075
container_issue 4
container_start_page 1064
container_title The New phytologist
container_volume 193
creator Fabre, Frédéric
Rousseau, Elsa
Mailleret, Ludovic
Moury, Benoit
description The deployment of resistant crops often leads to the emergence of resistance-breaking pathogens that suppress the yield benefit provided by the resistance. Here, we theoretically explored how farmers' main leverages (resistant cultivar choice, resistance deployment strategy, landscape planning and cultural practices) can be best combined to achieve resistance durability while minimizing yield losses as a result of plant viruses. Assuming a gene-for-gene type of interaction, virus epidemics are modelled in a landscape composed of a mosaic of resistant and susceptible fields, subjected to seasonality, and a reservoir hosting viruses year-round. The model links the genetic and the epidemiological processes, shaping at nested scales the demogenetic dynamics of viruses. The choice of the resistance gene (characterized by the equilibrium frequency of the resistance-breaking virus at mutation-selection balance in a susceptible plant) is the most influential leverage of action. Our results showed that optimal strategies of resistance deployment range from ‘mixture’ (where susceptible and resistant cultivars coexist) to ‘pure’ strategies (with only resistant cultivar) depending on the resistance characteristics and the epidemiological context (epidemic incidence and landscape connectivity). We demonstrate and discuss gaps concerning virus epidemiology across the agro-ecological interface that must be filled to achieve sustainable disease management.
doi_str_mv 10.1111/j.1469-8137.2011.04019.x
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00848412v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.193.4.1064</jstor_id><sourcerecordid>newphytologist.193.4.1064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5199-5be2ac4985252537e5c2cd6ee3c395fc9a021ca9c15080856ac7b2be539b8c383</originalsourceid><addsrcrecordid>eNqNkUuP0zAUhS0EYsrAX0CWWCAWCX7XXrAYDY8iVcACJHaW4952ErlxsJOZ6b_HIUMXrLAXtny_c3ztgxCmpKZlvO1qKpSpNOXrmhFKayIINfX9I7Q6Fx6jFSFMV0qonxfoWc4dIcRIxZ6iC8aYImzNVmjzfkquCYDzmNwIhxYyHiPewRDiCQ_B9SNOkNs8ut4DbnvsDqn1UxiLLuBS32XvBsjP0ZO9CxlePKyX6MfHD9-vN9X266fP11fbyktqTCUbYM4LoyUrk69BeuZ3CoB7buTeG0cY9c54KokmWirn1w1rQHLTaM81v0RvFt8bF-yQ2qNLJxtdazdXWzufEaKFFpTd0sK-XtghxV8T5NEe2-whlK4hTtma0pHkRLJCvvqH7OKU-vIQyyTlgiilZj-9UD7FnBPszw1QYudgbGfn_7fz_9s5GPsnGHtfpC8fLpiaI-zOwr9JFODdAty1AU7_bWy_fNvMu6KvF32Xx5jO-h7uhpvTGEM8lAxtAa0opkrw38Diq1M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513406661</pqid></control><display><type>article</type><title>Durable strategies to deploy plant resistance in agricultural landscapes</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library All Journals</source><creator>Fabre, Frédéric ; Rousseau, Elsa ; Mailleret, Ludovic ; Moury, Benoit</creator><creatorcontrib>Fabre, Frédéric ; Rousseau, Elsa ; Mailleret, Ludovic ; Moury, Benoit</creatorcontrib><description>The deployment of resistant crops often leads to the emergence of resistance-breaking pathogens that suppress the yield benefit provided by the resistance. Here, we theoretically explored how farmers' main leverages (resistant cultivar choice, resistance deployment strategy, landscape planning and cultural practices) can be best combined to achieve resistance durability while minimizing yield losses as a result of plant viruses. Assuming a gene-for-gene type of interaction, virus epidemics are modelled in a landscape composed of a mosaic of resistant and susceptible fields, subjected to seasonality, and a reservoir hosting viruses year-round. The model links the genetic and the epidemiological processes, shaping at nested scales the demogenetic dynamics of viruses. The choice of the resistance gene (characterized by the equilibrium frequency of the resistance-breaking virus at mutation-selection balance in a susceptible plant) is the most influential leverage of action. Our results showed that optimal strategies of resistance deployment range from ‘mixture’ (where susceptible and resistant cultivars coexist) to ‘pure’ strategies (with only resistant cultivar) depending on the resistance characteristics and the epidemiological context (epidemic incidence and landscape connectivity). We demonstrate and discuss gaps concerning virus epidemiology across the agro-ecological interface that must be filled to achieve sustainable disease management.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2011.04019.x</identifier><identifier>PMID: 22260272</identifier><language>eng</language><publisher>Oxford, UK: New Phytologist Trust</publisher><subject>Agricultural land ; Agriculture - methods ; Automatic Control Engineering ; Computer Science ; Crops, Agricultural - virology ; Cultivars ; Deployment ; deployment strategy ; Disease models ; Disease reservoirs ; Disease resistance ; Disease Resistance - genetics ; Durability ; durable resistance ; Engineering Sciences ; Epidemics ; Epidemiology ; evolutionary epidemiology ; General Mathematics ; Genetic mutation ; gene‐for‐gene model ; Infections ; Landscape ; Landscape architecture ; landscape epidemiology ; Life Sciences ; Mathematical models ; Mathematics ; Model testing ; Models, Biological ; Mutation ; Pathogens ; Phytopathology ; Plant resistance ; Plant viruses ; Plant Viruses - pathogenicity ; Plants ; Seasonal variations ; Seasonality ; Viral Load ; Viruses ; Yields</subject><ispartof>The New phytologist, 2012-03, Vol.193 (4), p.1064-1075</ispartof><rights>2012 New Phytologist Trust</rights><rights>2012 INRA. New Phytologist © 2012 New Phytologist Trust</rights><rights>2012 INRA. New Phytologist © 2012 New Phytologist Trust.</rights><rights>Copyright Wiley Subscription Services, Inc. Mar 2012</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5199-5be2ac4985252537e5c2cd6ee3c395fc9a021ca9c15080856ac7b2be539b8c383</citedby><cites>FETCH-LOGICAL-c5199-5be2ac4985252537e5c2cd6ee3c395fc9a021ca9c15080856ac7b2be539b8c383</cites><orcidid>0000-0003-3081-1034 ; 0000-0001-7019-8401 ; 0000-0001-8271-7678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.193.4.1064$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.193.4.1064$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,1416,1432,27923,27924,45573,45574,46408,46832,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22260272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00848412$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fabre, Frédéric</creatorcontrib><creatorcontrib>Rousseau, Elsa</creatorcontrib><creatorcontrib>Mailleret, Ludovic</creatorcontrib><creatorcontrib>Moury, Benoit</creatorcontrib><title>Durable strategies to deploy plant resistance in agricultural landscapes</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The deployment of resistant crops often leads to the emergence of resistance-breaking pathogens that suppress the yield benefit provided by the resistance. Here, we theoretically explored how farmers' main leverages (resistant cultivar choice, resistance deployment strategy, landscape planning and cultural practices) can be best combined to achieve resistance durability while minimizing yield losses as a result of plant viruses. Assuming a gene-for-gene type of interaction, virus epidemics are modelled in a landscape composed of a mosaic of resistant and susceptible fields, subjected to seasonality, and a reservoir hosting viruses year-round. The model links the genetic and the epidemiological processes, shaping at nested scales the demogenetic dynamics of viruses. The choice of the resistance gene (characterized by the equilibrium frequency of the resistance-breaking virus at mutation-selection balance in a susceptible plant) is the most influential leverage of action. Our results showed that optimal strategies of resistance deployment range from ‘mixture’ (where susceptible and resistant cultivars coexist) to ‘pure’ strategies (with only resistant cultivar) depending on the resistance characteristics and the epidemiological context (epidemic incidence and landscape connectivity). We demonstrate and discuss gaps concerning virus epidemiology across the agro-ecological interface that must be filled to achieve sustainable disease management.</description><subject>Agricultural land</subject><subject>Agriculture - methods</subject><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Crops, Agricultural - virology</subject><subject>Cultivars</subject><subject>Deployment</subject><subject>deployment strategy</subject><subject>Disease models</subject><subject>Disease reservoirs</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Durability</subject><subject>durable resistance</subject><subject>Engineering Sciences</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>evolutionary epidemiology</subject><subject>General Mathematics</subject><subject>Genetic mutation</subject><subject>gene‐for‐gene model</subject><subject>Infections</subject><subject>Landscape</subject><subject>Landscape architecture</subject><subject>landscape epidemiology</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Model testing</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Pathogens</subject><subject>Phytopathology</subject><subject>Plant resistance</subject><subject>Plant viruses</subject><subject>Plant Viruses - pathogenicity</subject><subject>Plants</subject><subject>Seasonal variations</subject><subject>Seasonality</subject><subject>Viral Load</subject><subject>Viruses</subject><subject>Yields</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuP0zAUhS0EYsrAX0CWWCAWCX7XXrAYDY8iVcACJHaW4952ErlxsJOZ6b_HIUMXrLAXtny_c3ztgxCmpKZlvO1qKpSpNOXrmhFKayIINfX9I7Q6Fx6jFSFMV0qonxfoWc4dIcRIxZ6iC8aYImzNVmjzfkquCYDzmNwIhxYyHiPewRDiCQ_B9SNOkNs8ut4DbnvsDqn1UxiLLuBS32XvBsjP0ZO9CxlePKyX6MfHD9-vN9X266fP11fbyktqTCUbYM4LoyUrk69BeuZ3CoB7buTeG0cY9c54KokmWirn1w1rQHLTaM81v0RvFt8bF-yQ2qNLJxtdazdXWzufEaKFFpTd0sK-XtghxV8T5NEe2-whlK4hTtma0pHkRLJCvvqH7OKU-vIQyyTlgiilZj-9UD7FnBPszw1QYudgbGfn_7fz_9s5GPsnGHtfpC8fLpiaI-zOwr9JFODdAty1AU7_bWy_fNvMu6KvF32Xx5jO-h7uhpvTGEM8lAxtAa0opkrw38Diq1M</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Fabre, Frédéric</creator><creator>Rousseau, Elsa</creator><creator>Mailleret, Ludovic</creator><creator>Moury, Benoit</creator><general>New Phytologist Trust</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3081-1034</orcidid><orcidid>https://orcid.org/0000-0001-7019-8401</orcidid><orcidid>https://orcid.org/0000-0001-8271-7678</orcidid></search><sort><creationdate>201203</creationdate><title>Durable strategies to deploy plant resistance in agricultural landscapes</title><author>Fabre, Frédéric ; Rousseau, Elsa ; Mailleret, Ludovic ; Moury, Benoit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5199-5be2ac4985252537e5c2cd6ee3c395fc9a021ca9c15080856ac7b2be539b8c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agricultural land</topic><topic>Agriculture - methods</topic><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Crops, Agricultural - virology</topic><topic>Cultivars</topic><topic>Deployment</topic><topic>deployment strategy</topic><topic>Disease models</topic><topic>Disease reservoirs</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Durability</topic><topic>durable resistance</topic><topic>Engineering Sciences</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>evolutionary epidemiology</topic><topic>General Mathematics</topic><topic>Genetic mutation</topic><topic>gene‐for‐gene model</topic><topic>Infections</topic><topic>Landscape</topic><topic>Landscape architecture</topic><topic>landscape epidemiology</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Model testing</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Pathogens</topic><topic>Phytopathology</topic><topic>Plant resistance</topic><topic>Plant viruses</topic><topic>Plant Viruses - pathogenicity</topic><topic>Plants</topic><topic>Seasonal variations</topic><topic>Seasonality</topic><topic>Viral Load</topic><topic>Viruses</topic><topic>Yields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fabre, Frédéric</creatorcontrib><creatorcontrib>Rousseau, Elsa</creatorcontrib><creatorcontrib>Mailleret, Ludovic</creatorcontrib><creatorcontrib>Moury, Benoit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabre, Frédéric</au><au>Rousseau, Elsa</au><au>Mailleret, Ludovic</au><au>Moury, Benoit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Durable strategies to deploy plant resistance in agricultural landscapes</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2012-03</date><risdate>2012</risdate><volume>193</volume><issue>4</issue><spage>1064</spage><epage>1075</epage><pages>1064-1075</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The deployment of resistant crops often leads to the emergence of resistance-breaking pathogens that suppress the yield benefit provided by the resistance. Here, we theoretically explored how farmers' main leverages (resistant cultivar choice, resistance deployment strategy, landscape planning and cultural practices) can be best combined to achieve resistance durability while minimizing yield losses as a result of plant viruses. Assuming a gene-for-gene type of interaction, virus epidemics are modelled in a landscape composed of a mosaic of resistant and susceptible fields, subjected to seasonality, and a reservoir hosting viruses year-round. The model links the genetic and the epidemiological processes, shaping at nested scales the demogenetic dynamics of viruses. The choice of the resistance gene (characterized by the equilibrium frequency of the resistance-breaking virus at mutation-selection balance in a susceptible plant) is the most influential leverage of action. Our results showed that optimal strategies of resistance deployment range from ‘mixture’ (where susceptible and resistant cultivars coexist) to ‘pure’ strategies (with only resistant cultivar) depending on the resistance characteristics and the epidemiological context (epidemic incidence and landscape connectivity). We demonstrate and discuss gaps concerning virus epidemiology across the agro-ecological interface that must be filled to achieve sustainable disease management.</abstract><cop>Oxford, UK</cop><pub>New Phytologist Trust</pub><pmid>22260272</pmid><doi>10.1111/j.1469-8137.2011.04019.x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3081-1034</orcidid><orcidid>https://orcid.org/0000-0001-7019-8401</orcidid><orcidid>https://orcid.org/0000-0001-8271-7678</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2012-03, Vol.193 (4), p.1064-1075
issn 0028-646X
1469-8137
language eng
recordid cdi_hal_primary_oai_HAL_hal_00848412v1
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Wiley Free Content; IngentaConnect Free/Open Access Journals; Wiley Online Library All Journals
subjects Agricultural land
Agriculture - methods
Automatic Control Engineering
Computer Science
Crops, Agricultural - virology
Cultivars
Deployment
deployment strategy
Disease models
Disease reservoirs
Disease resistance
Disease Resistance - genetics
Durability
durable resistance
Engineering Sciences
Epidemics
Epidemiology
evolutionary epidemiology
General Mathematics
Genetic mutation
gene‐for‐gene model
Infections
Landscape
Landscape architecture
landscape epidemiology
Life Sciences
Mathematical models
Mathematics
Model testing
Models, Biological
Mutation
Pathogens
Phytopathology
Plant resistance
Plant viruses
Plant Viruses - pathogenicity
Plants
Seasonal variations
Seasonality
Viral Load
Viruses
Yields
title Durable strategies to deploy plant resistance in agricultural landscapes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Durable%20strategies%20to%20deploy%20plant%20resistance%20in%20agricultural%20landscapes&rft.jtitle=The%20New%20phytologist&rft.au=Fabre,%20Fr%C3%A9d%C3%A9ric&rft.date=2012-03&rft.volume=193&rft.issue=4&rft.spage=1064&rft.epage=1075&rft.pages=1064-1075&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2011.04019.x&rft_dat=%3Cjstor_hal_p%3Enewphytologist.193.4.1064%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513406661&rft_id=info:pmid/22260272&rft_jstor_id=newphytologist.193.4.1064&rfr_iscdi=true