Knot state asymptotics I: AJ conjecture and Abelian representations

Consider the Chern-Simons topological quantum field theory with gauge group and level k . Given a knot in the 3-sphere, this theory associates to the knot exterior an element in a vector space. We call this vector the knot state and study its asymptotic properties when the level is large. The latter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications mathématiques. Institut des hautes études scientifiques 2015-06, Vol.121 (1), p.279-322
Hauptverfasser: Charles, L., Marché, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue 1
container_start_page 279
container_title Publications mathématiques. Institut des hautes études scientifiques
container_volume 121
creator Charles, L.
Marché, J.
description Consider the Chern-Simons topological quantum field theory with gauge group and level k . Given a knot in the 3-sphere, this theory associates to the knot exterior an element in a vector space. We call this vector the knot state and study its asymptotic properties when the level is large. The latter vector space being isomorphic to the geometric quantization of the -character variety of the peripheral torus, the knot state may be viewed as a section defined over this character variety. We first conjecture that the knot state concentrates in the large level limit to the character variety of the knot. This statement may be viewed as a real and smooth version of the AJ conjecture. Our second conjecture says that the knot state in the neighborhood of Abelian representations is a Lagrangian state. Using microlocal techniques, we prove these conjectures for the figure eight and torus knots. The proof is based on q -difference relations for the colored Jones polynomial. We also provide a new proof for the asymptotics of the Witten-Reshetikhin-Turaev invariant of the lens spaces and a derivation of the Melvin-Morton-Rozansky theorem from the two conjectures.
doi_str_mv 10.1007/s10240-015-0068-y
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00843245v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00843245v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-329cbcdf5012fa59b8e84a801f1d33bb3d391ee50eabced42cf4fd4fcf5238e53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwA9i8MhjuYjt12KKKj0IlFpgtx7EhVetUdoqUf4-rIEYmS-f3TrpHyDXCLQIs7hJCIYABSgZQKjaekBmWqBhWyE_JLDOcKQ54Ti5S2gDgoizVjCxfQz_QNJjBUZPG3X7oh84murqn9Qu1fdg4Oxxi_gwtrRu37Uyg0e2jSy5kq-tDuiRn3myTu_p95-Tj8eF9-czWb0-rZb1mVnA5MF5UtrGtl4CFN7JqlFPCKECPLedNw1teoXMSnGmsa0VhvfCt8NbLgisn-ZzcTHu_zFbvY7czcdS96fRzvdbHGYASvBDyGzOLE2tjn1J0_k9A0MdieiqmczF9LKbH7BSTkzIbPl3Um_4QQz7pH-kHvRNvHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Knot state asymptotics I: AJ conjecture and Abelian representations</title><source>Springer Nature - Complete Springer Journals</source><creator>Charles, L. ; Marché, J.</creator><creatorcontrib>Charles, L. ; Marché, J.</creatorcontrib><description>Consider the Chern-Simons topological quantum field theory with gauge group and level k . Given a knot in the 3-sphere, this theory associates to the knot exterior an element in a vector space. We call this vector the knot state and study its asymptotic properties when the level is large. The latter vector space being isomorphic to the geometric quantization of the -character variety of the peripheral torus, the knot state may be viewed as a section defined over this character variety. We first conjecture that the knot state concentrates in the large level limit to the character variety of the knot. This statement may be viewed as a real and smooth version of the AJ conjecture. Our second conjecture says that the knot state in the neighborhood of Abelian representations is a Lagrangian state. Using microlocal techniques, we prove these conjectures for the figure eight and torus knots. The proof is based on q -difference relations for the colored Jones polynomial. We also provide a new proof for the asymptotics of the Witten-Reshetikhin-Turaev invariant of the lens spaces and a derivation of the Melvin-Morton-Rozansky theorem from the two conjectures.</description><identifier>ISSN: 0073-8301</identifier><identifier>EISSN: 1618-1913</identifier><identifier>DOI: 10.1007/s10240-015-0068-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Analysis ; Geometric Topology ; Geometry ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Number Theory ; Symplectic Geometry</subject><ispartof>Publications mathématiques. Institut des hautes études scientifiques, 2015-06, Vol.121 (1), p.279-322</ispartof><rights>IHES and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-329cbcdf5012fa59b8e84a801f1d33bb3d391ee50eabced42cf4fd4fcf5238e53</citedby><cites>FETCH-LOGICAL-c435t-329cbcdf5012fa59b8e84a801f1d33bb3d391ee50eabced42cf4fd4fcf5238e53</cites><orcidid>0000-0002-3430-012X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10240-015-0068-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10240-015-0068-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00843245$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Charles, L.</creatorcontrib><creatorcontrib>Marché, J.</creatorcontrib><title>Knot state asymptotics I: AJ conjecture and Abelian representations</title><title>Publications mathématiques. Institut des hautes études scientifiques</title><addtitle>Publ.math.IHES</addtitle><description>Consider the Chern-Simons topological quantum field theory with gauge group and level k . Given a knot in the 3-sphere, this theory associates to the knot exterior an element in a vector space. We call this vector the knot state and study its asymptotic properties when the level is large. The latter vector space being isomorphic to the geometric quantization of the -character variety of the peripheral torus, the knot state may be viewed as a section defined over this character variety. We first conjecture that the knot state concentrates in the large level limit to the character variety of the knot. This statement may be viewed as a real and smooth version of the AJ conjecture. Our second conjecture says that the knot state in the neighborhood of Abelian representations is a Lagrangian state. Using microlocal techniques, we prove these conjectures for the figure eight and torus knots. The proof is based on q -difference relations for the colored Jones polynomial. We also provide a new proof for the asymptotics of the Witten-Reshetikhin-Turaev invariant of the lens spaces and a derivation of the Melvin-Morton-Rozansky theorem from the two conjectures.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometric Topology</subject><subject>Geometry</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Symplectic Geometry</subject><issn>0073-8301</issn><issn>1618-1913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwA9i8MhjuYjt12KKKj0IlFpgtx7EhVetUdoqUf4-rIEYmS-f3TrpHyDXCLQIs7hJCIYABSgZQKjaekBmWqBhWyE_JLDOcKQ54Ti5S2gDgoizVjCxfQz_QNJjBUZPG3X7oh84murqn9Qu1fdg4Oxxi_gwtrRu37Uyg0e2jSy5kq-tDuiRn3myTu_p95-Tj8eF9-czWb0-rZb1mVnA5MF5UtrGtl4CFN7JqlFPCKECPLedNw1teoXMSnGmsa0VhvfCt8NbLgisn-ZzcTHu_zFbvY7czcdS96fRzvdbHGYASvBDyGzOLE2tjn1J0_k9A0MdieiqmczF9LKbH7BSTkzIbPl3Um_4QQz7pH-kHvRNvHQ</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Charles, L.</creator><creator>Marché, J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3430-012X</orcidid></search><sort><creationdate>20150601</creationdate><title>Knot state asymptotics I: AJ conjecture and Abelian representations</title><author>Charles, L. ; Marché, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-329cbcdf5012fa59b8e84a801f1d33bb3d391ee50eabced42cf4fd4fcf5238e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometric Topology</topic><topic>Geometry</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Symplectic Geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charles, L.</creatorcontrib><creatorcontrib>Marché, J.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Publications mathématiques. Institut des hautes études scientifiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charles, L.</au><au>Marché, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knot state asymptotics I: AJ conjecture and Abelian representations</atitle><jtitle>Publications mathématiques. Institut des hautes études scientifiques</jtitle><stitle>Publ.math.IHES</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>121</volume><issue>1</issue><spage>279</spage><epage>322</epage><pages>279-322</pages><issn>0073-8301</issn><eissn>1618-1913</eissn><abstract>Consider the Chern-Simons topological quantum field theory with gauge group and level k . Given a knot in the 3-sphere, this theory associates to the knot exterior an element in a vector space. We call this vector the knot state and study its asymptotic properties when the level is large. The latter vector space being isomorphic to the geometric quantization of the -character variety of the peripheral torus, the knot state may be viewed as a section defined over this character variety. We first conjecture that the knot state concentrates in the large level limit to the character variety of the knot. This statement may be viewed as a real and smooth version of the AJ conjecture. Our second conjecture says that the knot state in the neighborhood of Abelian representations is a Lagrangian state. Using microlocal techniques, we prove these conjectures for the figure eight and torus knots. The proof is based on q -difference relations for the colored Jones polynomial. We also provide a new proof for the asymptotics of the Witten-Reshetikhin-Turaev invariant of the lens spaces and a derivation of the Melvin-Morton-Rozansky theorem from the two conjectures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10240-015-0068-y</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0002-3430-012X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0073-8301
ispartof Publications mathématiques. Institut des hautes études scientifiques, 2015-06, Vol.121 (1), p.279-322
issn 0073-8301
1618-1913
language eng
recordid cdi_hal_primary_oai_HAL_hal_00843245v1
source Springer Nature - Complete Springer Journals
subjects Algebra
Analysis
Geometric Topology
Geometry
Mathematical Physics
Mathematics
Mathematics and Statistics
Number Theory
Symplectic Geometry
title Knot state asymptotics I: AJ conjecture and Abelian representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knot%20state%20asymptotics%20I:%20AJ%20conjecture%20and%20Abelian%20representations&rft.jtitle=Publications%20math%C3%A9matiques.%20Institut%20des%20hautes%20%C3%A9tudes%20scientifiques&rft.au=Charles,%20L.&rft.date=2015-06-01&rft.volume=121&rft.issue=1&rft.spage=279&rft.epage=322&rft.pages=279-322&rft.issn=0073-8301&rft.eissn=1618-1913&rft_id=info:doi/10.1007/s10240-015-0068-y&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00843245v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true