Knot state asymptotics I: AJ conjecture and Abelian representations
Consider the Chern-Simons topological quantum field theory with gauge group and level k . Given a knot in the 3-sphere, this theory associates to the knot exterior an element in a vector space. We call this vector the knot state and study its asymptotic properties when the level is large. The latter...
Gespeichert in:
Veröffentlicht in: | Publications mathématiques. Institut des hautes études scientifiques 2015-06, Vol.121 (1), p.279-322 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 1 |
container_start_page | 279 |
container_title | Publications mathématiques. Institut des hautes études scientifiques |
container_volume | 121 |
creator | Charles, L. Marché, J. |
description | Consider the Chern-Simons topological quantum field theory with gauge group
and level
k
. Given a knot in the 3-sphere, this theory associates to the knot exterior an element in a vector space. We call this vector the knot state and study its asymptotic properties when the level is large.
The latter vector space being isomorphic to the geometric quantization of the
-character variety of the peripheral torus, the knot state may be viewed as a section defined over this character variety. We first conjecture that the knot state concentrates in the large level limit to the character variety of the knot. This statement may be viewed as a real and smooth version of the AJ conjecture. Our second conjecture says that the knot state in the neighborhood of Abelian representations is a Lagrangian state.
Using microlocal techniques, we prove these conjectures for the figure eight and torus knots. The proof is based on
q
-difference relations for the colored Jones polynomial. We also provide a new proof for the asymptotics of the Witten-Reshetikhin-Turaev invariant of the lens spaces and a derivation of the Melvin-Morton-Rozansky theorem from the two conjectures. |
doi_str_mv | 10.1007/s10240-015-0068-y |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00843245v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00843245v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-329cbcdf5012fa59b8e84a801f1d33bb3d391ee50eabced42cf4fd4fcf5238e53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwA9i8MhjuYjt12KKKj0IlFpgtx7EhVetUdoqUf4-rIEYmS-f3TrpHyDXCLQIs7hJCIYABSgZQKjaekBmWqBhWyE_JLDOcKQ54Ti5S2gDgoizVjCxfQz_QNJjBUZPG3X7oh84murqn9Qu1fdg4Oxxi_gwtrRu37Uyg0e2jSy5kq-tDuiRn3myTu_p95-Tj8eF9-czWb0-rZb1mVnA5MF5UtrGtl4CFN7JqlFPCKECPLedNw1teoXMSnGmsa0VhvfCt8NbLgisn-ZzcTHu_zFbvY7czcdS96fRzvdbHGYASvBDyGzOLE2tjn1J0_k9A0MdieiqmczF9LKbH7BSTkzIbPl3Um_4QQz7pH-kHvRNvHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Knot state asymptotics I: AJ conjecture and Abelian representations</title><source>Springer Nature - Complete Springer Journals</source><creator>Charles, L. ; Marché, J.</creator><creatorcontrib>Charles, L. ; Marché, J.</creatorcontrib><description>Consider the Chern-Simons topological quantum field theory with gauge group
and level
k
. Given a knot in the 3-sphere, this theory associates to the knot exterior an element in a vector space. We call this vector the knot state and study its asymptotic properties when the level is large.
The latter vector space being isomorphic to the geometric quantization of the
-character variety of the peripheral torus, the knot state may be viewed as a section defined over this character variety. We first conjecture that the knot state concentrates in the large level limit to the character variety of the knot. This statement may be viewed as a real and smooth version of the AJ conjecture. Our second conjecture says that the knot state in the neighborhood of Abelian representations is a Lagrangian state.
Using microlocal techniques, we prove these conjectures for the figure eight and torus knots. The proof is based on
q
-difference relations for the colored Jones polynomial. We also provide a new proof for the asymptotics of the Witten-Reshetikhin-Turaev invariant of the lens spaces and a derivation of the Melvin-Morton-Rozansky theorem from the two conjectures.</description><identifier>ISSN: 0073-8301</identifier><identifier>EISSN: 1618-1913</identifier><identifier>DOI: 10.1007/s10240-015-0068-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Analysis ; Geometric Topology ; Geometry ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Number Theory ; Symplectic Geometry</subject><ispartof>Publications mathématiques. Institut des hautes études scientifiques, 2015-06, Vol.121 (1), p.279-322</ispartof><rights>IHES and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-329cbcdf5012fa59b8e84a801f1d33bb3d391ee50eabced42cf4fd4fcf5238e53</citedby><cites>FETCH-LOGICAL-c435t-329cbcdf5012fa59b8e84a801f1d33bb3d391ee50eabced42cf4fd4fcf5238e53</cites><orcidid>0000-0002-3430-012X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10240-015-0068-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10240-015-0068-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00843245$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Charles, L.</creatorcontrib><creatorcontrib>Marché, J.</creatorcontrib><title>Knot state asymptotics I: AJ conjecture and Abelian representations</title><title>Publications mathématiques. Institut des hautes études scientifiques</title><addtitle>Publ.math.IHES</addtitle><description>Consider the Chern-Simons topological quantum field theory with gauge group
and level
k
. Given a knot in the 3-sphere, this theory associates to the knot exterior an element in a vector space. We call this vector the knot state and study its asymptotic properties when the level is large.
The latter vector space being isomorphic to the geometric quantization of the
-character variety of the peripheral torus, the knot state may be viewed as a section defined over this character variety. We first conjecture that the knot state concentrates in the large level limit to the character variety of the knot. This statement may be viewed as a real and smooth version of the AJ conjecture. Our second conjecture says that the knot state in the neighborhood of Abelian representations is a Lagrangian state.
Using microlocal techniques, we prove these conjectures for the figure eight and torus knots. The proof is based on
q
-difference relations for the colored Jones polynomial. We also provide a new proof for the asymptotics of the Witten-Reshetikhin-Turaev invariant of the lens spaces and a derivation of the Melvin-Morton-Rozansky theorem from the two conjectures.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometric Topology</subject><subject>Geometry</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Symplectic Geometry</subject><issn>0073-8301</issn><issn>1618-1913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwA9i8MhjuYjt12KKKj0IlFpgtx7EhVetUdoqUf4-rIEYmS-f3TrpHyDXCLQIs7hJCIYABSgZQKjaekBmWqBhWyE_JLDOcKQ54Ti5S2gDgoizVjCxfQz_QNJjBUZPG3X7oh84murqn9Qu1fdg4Oxxi_gwtrRu37Uyg0e2jSy5kq-tDuiRn3myTu_p95-Tj8eF9-czWb0-rZb1mVnA5MF5UtrGtl4CFN7JqlFPCKECPLedNw1teoXMSnGmsa0VhvfCt8NbLgisn-ZzcTHu_zFbvY7czcdS96fRzvdbHGYASvBDyGzOLE2tjn1J0_k9A0MdieiqmczF9LKbH7BSTkzIbPl3Um_4QQz7pH-kHvRNvHQ</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Charles, L.</creator><creator>Marché, J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3430-012X</orcidid></search><sort><creationdate>20150601</creationdate><title>Knot state asymptotics I: AJ conjecture and Abelian representations</title><author>Charles, L. ; Marché, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-329cbcdf5012fa59b8e84a801f1d33bb3d391ee50eabced42cf4fd4fcf5238e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometric Topology</topic><topic>Geometry</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Symplectic Geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charles, L.</creatorcontrib><creatorcontrib>Marché, J.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Publications mathématiques. Institut des hautes études scientifiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charles, L.</au><au>Marché, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knot state asymptotics I: AJ conjecture and Abelian representations</atitle><jtitle>Publications mathématiques. Institut des hautes études scientifiques</jtitle><stitle>Publ.math.IHES</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>121</volume><issue>1</issue><spage>279</spage><epage>322</epage><pages>279-322</pages><issn>0073-8301</issn><eissn>1618-1913</eissn><abstract>Consider the Chern-Simons topological quantum field theory with gauge group
and level
k
. Given a knot in the 3-sphere, this theory associates to the knot exterior an element in a vector space. We call this vector the knot state and study its asymptotic properties when the level is large.
The latter vector space being isomorphic to the geometric quantization of the
-character variety of the peripheral torus, the knot state may be viewed as a section defined over this character variety. We first conjecture that the knot state concentrates in the large level limit to the character variety of the knot. This statement may be viewed as a real and smooth version of the AJ conjecture. Our second conjecture says that the knot state in the neighborhood of Abelian representations is a Lagrangian state.
Using microlocal techniques, we prove these conjectures for the figure eight and torus knots. The proof is based on
q
-difference relations for the colored Jones polynomial. We also provide a new proof for the asymptotics of the Witten-Reshetikhin-Turaev invariant of the lens spaces and a derivation of the Melvin-Morton-Rozansky theorem from the two conjectures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10240-015-0068-y</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0002-3430-012X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0073-8301 |
ispartof | Publications mathématiques. Institut des hautes études scientifiques, 2015-06, Vol.121 (1), p.279-322 |
issn | 0073-8301 1618-1913 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00843245v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Analysis Geometric Topology Geometry Mathematical Physics Mathematics Mathematics and Statistics Number Theory Symplectic Geometry |
title | Knot state asymptotics I: AJ conjecture and Abelian representations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knot%20state%20asymptotics%20I:%20AJ%20conjecture%20and%20Abelian%20representations&rft.jtitle=Publications%20math%C3%A9matiques.%20Institut%20des%20hautes%20%C3%A9tudes%20scientifiques&rft.au=Charles,%20L.&rft.date=2015-06-01&rft.volume=121&rft.issue=1&rft.spage=279&rft.epage=322&rft.pages=279-322&rft.issn=0073-8301&rft.eissn=1618-1913&rft_id=info:doi/10.1007/s10240-015-0068-y&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00843245v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |