Spectrum of periodically correlated fields

The paper deals with Hilbert space valued fields over any locally compact Abelian group G, in particular over G = Z^n × R^m, which are periodically correlated (PC) with respect to a closed subgroup of G. PC fields can be regarded as multi-parameter extensions of PC processes. We study structure, cov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pure and applied mathematics 2014, Vol.7 (3), p.343-368
Hauptverfasser: Dehay, Dominique, Hurd, Harry L., Makagon, Andrzej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 3
container_start_page 343
container_title European journal of pure and applied mathematics
container_volume 7
creator Dehay, Dominique
Hurd, Harry L.
Makagon, Andrzej
description The paper deals with Hilbert space valued fields over any locally compact Abelian group G, in particular over G = Z^n × R^m, which are periodically correlated (PC) with respect to a closed subgroup of G. PC fields can be regarded as multi-parameter extensions of PC processes. We study structure, covariance function, and an analogue of the spectrum for such fields. As an example a weakly PC field over Z^2 is thoroughly examined.
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00842839v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00842839v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h119t-bbc3f117bbd548c6edc6ef9813b63a0217b89fff94bbe9eb6affd6ff869f818f3</originalsourceid><addsrcrecordid>eNpNjU1rwkAURQepULH-h2wrBOb5ksnMUqSthYAL7TrMx3s4MpIwSQv--1raRReXe7iLc2diASibsq4rfPjHj2I1jhcp5Qa0RAULsT4O5Kf8eS16LgbKsQ_R25Ruhe9zpmQnCgVHSmF8EnO2aaTVXy_Fx-vLabcv28Pb-27blmcAM5XOeWSAxrlQV9orCvew0YBOob0_N04bZjaVc2TIKcscFLNWhjVoxqV4_vWebeqGHK8237rexm6_bbufTUpdbTSaL8BvvjpCdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectrum of periodically correlated fields</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dehay, Dominique ; Hurd, Harry L. ; Makagon, Andrzej</creator><creatorcontrib>Dehay, Dominique ; Hurd, Harry L. ; Makagon, Andrzej</creatorcontrib><description>The paper deals with Hilbert space valued fields over any locally compact Abelian group G, in particular over G = Z^n × R^m, which are periodically correlated (PC) with respect to a closed subgroup of G. PC fields can be regarded as multi-parameter extensions of PC processes. We study structure, covariance function, and an analogue of the spectrum for such fields. As an example a weakly PC field over Z^2 is thoroughly examined.</description><identifier>ISSN: 1307-5543</identifier><identifier>EISSN: 1307-5543</identifier><language>eng</language><publisher>New York Business Global, USA</publisher><subject>Mathematics ; Statistics ; Statistics Theory</subject><ispartof>European journal of pure and applied mathematics, 2014, Vol.7 (3), p.343-368</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5567-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00842839$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dehay, Dominique</creatorcontrib><creatorcontrib>Hurd, Harry L.</creatorcontrib><creatorcontrib>Makagon, Andrzej</creatorcontrib><title>Spectrum of periodically correlated fields</title><title>European journal of pure and applied mathematics</title><description>The paper deals with Hilbert space valued fields over any locally compact Abelian group G, in particular over G = Z^n × R^m, which are periodically correlated (PC) with respect to a closed subgroup of G. PC fields can be regarded as multi-parameter extensions of PC processes. We study structure, covariance function, and an analogue of the spectrum for such fields. As an example a weakly PC field over Z^2 is thoroughly examined.</description><subject>Mathematics</subject><subject>Statistics</subject><subject>Statistics Theory</subject><issn>1307-5543</issn><issn>1307-5543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNjU1rwkAURQepULH-h2wrBOb5ksnMUqSthYAL7TrMx3s4MpIwSQv--1raRReXe7iLc2diASibsq4rfPjHj2I1jhcp5Qa0RAULsT4O5Kf8eS16LgbKsQ_R25Ruhe9zpmQnCgVHSmF8EnO2aaTVXy_Fx-vLabcv28Pb-27blmcAM5XOeWSAxrlQV9orCvew0YBOob0_N04bZjaVc2TIKcscFLNWhjVoxqV4_vWebeqGHK8237rexm6_bbufTUpdbTSaL8BvvjpCdQ</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Dehay, Dominique</creator><creator>Hurd, Harry L.</creator><creator>Makagon, Andrzej</creator><general>New York Business Global, USA</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5567-3531</orcidid></search><sort><creationdate>2014</creationdate><title>Spectrum of periodically correlated fields</title><author>Dehay, Dominique ; Hurd, Harry L. ; Makagon, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h119t-bbc3f117bbd548c6edc6ef9813b63a0217b89fff94bbe9eb6affd6ff869f818f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Mathematics</topic><topic>Statistics</topic><topic>Statistics Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehay, Dominique</creatorcontrib><creatorcontrib>Hurd, Harry L.</creatorcontrib><creatorcontrib>Makagon, Andrzej</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehay, Dominique</au><au>Hurd, Harry L.</au><au>Makagon, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectrum of periodically correlated fields</atitle><jtitle>European journal of pure and applied mathematics</jtitle><date>2014</date><risdate>2014</risdate><volume>7</volume><issue>3</issue><spage>343</spage><epage>368</epage><pages>343-368</pages><issn>1307-5543</issn><eissn>1307-5543</eissn><abstract>The paper deals with Hilbert space valued fields over any locally compact Abelian group G, in particular over G = Z^n × R^m, which are periodically correlated (PC) with respect to a closed subgroup of G. PC fields can be regarded as multi-parameter extensions of PC processes. We study structure, covariance function, and an analogue of the spectrum for such fields. As an example a weakly PC field over Z^2 is thoroughly examined.</abstract><pub>New York Business Global, USA</pub><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5567-3531</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1307-5543
ispartof European journal of pure and applied mathematics, 2014, Vol.7 (3), p.343-368
issn 1307-5543
1307-5543
language eng
recordid cdi_hal_primary_oai_HAL_hal_00842839v1
source EZB-FREE-00999 freely available EZB journals
subjects Mathematics
Statistics
Statistics Theory
title Spectrum of periodically correlated fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectrum%20of%20periodically%20correlated%20fields&rft.jtitle=European%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Dehay,%20Dominique&rft.date=2014&rft.volume=7&rft.issue=3&rft.spage=343&rft.epage=368&rft.pages=343-368&rft.issn=1307-5543&rft.eissn=1307-5543&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_00842839v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true