Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm
The fabrication of fluorescent nanodiamonds by the electron irradiation of a high-pressure high-temperature microdiamond followed by annealing and fragmentation has a number of advantages over other fabrication approaches. High energy electron irradiation of micron-sized diamonds is a safe and conve...
Gespeichert in:
Veröffentlicht in: | Diamond and related materials 2013-08, Vol.37, p.80-86 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | |
container_start_page | 80 |
container_title | Diamond and related materials |
container_volume | 37 |
creator | BOUDOU, Jean-Paul TISLER, Julia REUTER, Rolf THOREL, Alain CURMI, Patrick A JELEZKO, Fedor WRACHTRUP, Joerg |
description | The fabrication of fluorescent nanodiamonds by the electron irradiation of a high-pressure high-temperature microdiamond followed by annealing and fragmentation has a number of advantages over other fabrication approaches. High energy electron irradiation of micron-sized diamonds is a safe and convenient method to create vacancies within the lattice, thereby allowing for simple reactor designs. Well-defined annealing conditions facilitate vacancy migration and its subsequent capture by substitutional nitrogen (Ns) atoms, while avoiding the formation of unwanted coke on the surface of the diamond. In addition, microdiamonds offer a long vacancy migration path, which significantly increases the probability of vacancy trapping by nitrogen. In this report, we show that the fragmentation of irradiated and annealed microdiamonds creates round ultrasmall nanodiamonds composed of perfectly crystallized cubic-diamond nanocrystals, with fluorescent centers inside the nanocrystal core. Atomic force microscopy and confocal fluorescence microscopy demonstrate that approximately 30% of diamond nanocrystals with a size of less than 10 nm are fluorescent and have a remarkably long spin decoherence time (2.7 mu s for a 7 nm diamond nanocrystal). The presence of a high content of non-fluorescent ultrasmall nanodiamonds can be explained by the limited N concentration and its heterogeneous distribution in the initial raw high-pressure high-temperature diamond. The remarkably long spin decoherence time of the ultrasmall fluorescent nanodiamonds may be due to surface cleaning and nanodiamond fabrication procedures, which result in a low number of spin impurities in and around the nanocrystal. |
doi_str_mv | 10.1016/j.diamond.2013.05.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00841449v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1513465725</sourcerecordid><originalsourceid>FETCH-LOGICAL-h285t-65cca4217472ae995b8eec65ae7acd4370faff1ff5778ff912be305ad4b26e183</originalsourceid><addsrcrecordid>eNqFj01Lw0AYhBdRsFZ_grAXQQ-J--5HNnssxdpCQQ_1HN4mu2RLsqnZtKK_3pYWr55mGB6GGULugaXAIHvepJXHtgtVyhmIlKmUseyCjCDXJjlYfklGzHCVmEyoa3IT44Yx4EbCiCxmza7rbSxtGGjA0J2rIq1s7_e2oq7vWjp_n6_olx9qijT6H0s7RxsbIx1qDBQYDe0tuXLYRHt31jH5mL2spvNk-fa6mE6WSc1zNSSZKkuUHLTUHK0xap1bW2YKrcaykkIzh86Bc0rr3DkDfG0FU1jJNc8s5GJMnk69NTbFtvct9t9Fh76YT5bFMWMslyCl2cOBfTyx27773Nk4FK0_XG0aDLbbxQIUCJkpzdX_qJS55gLMccHDGcVYYuN6DKWPf1u4VkxJpcQvxT16nQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448723198</pqid></control><display><type>article</type><title>Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm</title><source>Elsevier ScienceDirect Journals</source><creator>BOUDOU, Jean-Paul ; TISLER, Julia ; REUTER, Rolf ; THOREL, Alain ; CURMI, Patrick A ; JELEZKO, Fedor ; WRACHTRUP, Joerg</creator><creatorcontrib>BOUDOU, Jean-Paul ; TISLER, Julia ; REUTER, Rolf ; THOREL, Alain ; CURMI, Patrick A ; JELEZKO, Fedor ; WRACHTRUP, Joerg</creatorcontrib><description>The fabrication of fluorescent nanodiamonds by the electron irradiation of a high-pressure high-temperature microdiamond followed by annealing and fragmentation has a number of advantages over other fabrication approaches. High energy electron irradiation of micron-sized diamonds is a safe and convenient method to create vacancies within the lattice, thereby allowing for simple reactor designs. Well-defined annealing conditions facilitate vacancy migration and its subsequent capture by substitutional nitrogen (Ns) atoms, while avoiding the formation of unwanted coke on the surface of the diamond. In addition, microdiamonds offer a long vacancy migration path, which significantly increases the probability of vacancy trapping by nitrogen. In this report, we show that the fragmentation of irradiated and annealed microdiamonds creates round ultrasmall nanodiamonds composed of perfectly crystallized cubic-diamond nanocrystals, with fluorescent centers inside the nanocrystal core. Atomic force microscopy and confocal fluorescence microscopy demonstrate that approximately 30% of diamond nanocrystals with a size of less than 10 nm are fluorescent and have a remarkably long spin decoherence time (2.7 mu s for a 7 nm diamond nanocrystal). The presence of a high content of non-fluorescent ultrasmall nanodiamonds can be explained by the limited N concentration and its heterogeneous distribution in the initial raw high-pressure high-temperature diamond. The remarkably long spin decoherence time of the ultrasmall fluorescent nanodiamonds may be due to surface cleaning and nanodiamond fabrication procedures, which result in a low number of spin impurities in and around the nanocrystal.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2013.05.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Annealing ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Diamonds ; Diffusion; interface formation ; Electrons and positron radiation effects ; Engineering Sciences ; Exact sciences and technology ; Fragmentation ; Fullerenes and related materials; diamonds, graphite ; Irradiation ; Lattice vacancies ; Materials ; Materials science ; Microdiamonds ; Nanocomposites ; Nanocrystals ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Other topics in nanoscale materials and structures ; Physical radiation effects, radiation damage ; Physics ; Solid surfaces and solid-solid interfaces ; Specific materials ; Structure of solids and liquids; crystallography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Diamond and related materials, 2013-08, Vol.37, p.80-86</ispartof><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5045-8501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27505455$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://minesparis-psl.hal.science/hal-00841449$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BOUDOU, Jean-Paul</creatorcontrib><creatorcontrib>TISLER, Julia</creatorcontrib><creatorcontrib>REUTER, Rolf</creatorcontrib><creatorcontrib>THOREL, Alain</creatorcontrib><creatorcontrib>CURMI, Patrick A</creatorcontrib><creatorcontrib>JELEZKO, Fedor</creatorcontrib><creatorcontrib>WRACHTRUP, Joerg</creatorcontrib><title>Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm</title><title>Diamond and related materials</title><description>The fabrication of fluorescent nanodiamonds by the electron irradiation of a high-pressure high-temperature microdiamond followed by annealing and fragmentation has a number of advantages over other fabrication approaches. High energy electron irradiation of micron-sized diamonds is a safe and convenient method to create vacancies within the lattice, thereby allowing for simple reactor designs. Well-defined annealing conditions facilitate vacancy migration and its subsequent capture by substitutional nitrogen (Ns) atoms, while avoiding the formation of unwanted coke on the surface of the diamond. In addition, microdiamonds offer a long vacancy migration path, which significantly increases the probability of vacancy trapping by nitrogen. In this report, we show that the fragmentation of irradiated and annealed microdiamonds creates round ultrasmall nanodiamonds composed of perfectly crystallized cubic-diamond nanocrystals, with fluorescent centers inside the nanocrystal core. Atomic force microscopy and confocal fluorescence microscopy demonstrate that approximately 30% of diamond nanocrystals with a size of less than 10 nm are fluorescent and have a remarkably long spin decoherence time (2.7 mu s for a 7 nm diamond nanocrystal). The presence of a high content of non-fluorescent ultrasmall nanodiamonds can be explained by the limited N concentration and its heterogeneous distribution in the initial raw high-pressure high-temperature diamond. The remarkably long spin decoherence time of the ultrasmall fluorescent nanodiamonds may be due to surface cleaning and nanodiamond fabrication procedures, which result in a low number of spin impurities in and around the nanocrystal.</description><subject>Annealing</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diamonds</subject><subject>Diffusion; interface formation</subject><subject>Electrons and positron radiation effects</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fragmentation</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Irradiation</subject><subject>Lattice vacancies</subject><subject>Materials</subject><subject>Materials science</subject><subject>Microdiamonds</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physical radiation effects, radiation damage</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Specific materials</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFj01Lw0AYhBdRsFZ_grAXQQ-J--5HNnssxdpCQQ_1HN4mu2RLsqnZtKK_3pYWr55mGB6GGULugaXAIHvepJXHtgtVyhmIlKmUseyCjCDXJjlYfklGzHCVmEyoa3IT44Yx4EbCiCxmza7rbSxtGGjA0J2rIq1s7_e2oq7vWjp_n6_olx9qijT6H0s7RxsbIx1qDBQYDe0tuXLYRHt31jH5mL2spvNk-fa6mE6WSc1zNSSZKkuUHLTUHK0xap1bW2YKrcaykkIzh86Bc0rr3DkDfG0FU1jJNc8s5GJMnk69NTbFtvct9t9Fh76YT5bFMWMslyCl2cOBfTyx27773Nk4FK0_XG0aDLbbxQIUCJkpzdX_qJS55gLMccHDGcVYYuN6DKWPf1u4VkxJpcQvxT16nQ</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>BOUDOU, Jean-Paul</creator><creator>TISLER, Julia</creator><creator>REUTER, Rolf</creator><creator>THOREL, Alain</creator><creator>CURMI, Patrick A</creator><creator>JELEZKO, Fedor</creator><creator>WRACHTRUP, Joerg</creator><general>Elsevier</general><scope>IQODW</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5045-8501</orcidid></search><sort><creationdate>20130801</creationdate><title>Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm</title><author>BOUDOU, Jean-Paul ; TISLER, Julia ; REUTER, Rolf ; THOREL, Alain ; CURMI, Patrick A ; JELEZKO, Fedor ; WRACHTRUP, Joerg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h285t-65cca4217472ae995b8eec65ae7acd4370faff1ff5778ff912be305ad4b26e183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Annealing</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diamonds</topic><topic>Diffusion; interface formation</topic><topic>Electrons and positron radiation effects</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fragmentation</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Irradiation</topic><topic>Lattice vacancies</topic><topic>Materials</topic><topic>Materials science</topic><topic>Microdiamonds</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physical radiation effects, radiation damage</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Specific materials</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOUDOU, Jean-Paul</creatorcontrib><creatorcontrib>TISLER, Julia</creatorcontrib><creatorcontrib>REUTER, Rolf</creatorcontrib><creatorcontrib>THOREL, Alain</creatorcontrib><creatorcontrib>CURMI, Patrick A</creatorcontrib><creatorcontrib>JELEZKO, Fedor</creatorcontrib><creatorcontrib>WRACHTRUP, Joerg</creatorcontrib><collection>Pascal-Francis</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOUDOU, Jean-Paul</au><au>TISLER, Julia</au><au>REUTER, Rolf</au><au>THOREL, Alain</au><au>CURMI, Patrick A</au><au>JELEZKO, Fedor</au><au>WRACHTRUP, Joerg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm</atitle><jtitle>Diamond and related materials</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>37</volume><spage>80</spage><epage>86</epage><pages>80-86</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>The fabrication of fluorescent nanodiamonds by the electron irradiation of a high-pressure high-temperature microdiamond followed by annealing and fragmentation has a number of advantages over other fabrication approaches. High energy electron irradiation of micron-sized diamonds is a safe and convenient method to create vacancies within the lattice, thereby allowing for simple reactor designs. Well-defined annealing conditions facilitate vacancy migration and its subsequent capture by substitutional nitrogen (Ns) atoms, while avoiding the formation of unwanted coke on the surface of the diamond. In addition, microdiamonds offer a long vacancy migration path, which significantly increases the probability of vacancy trapping by nitrogen. In this report, we show that the fragmentation of irradiated and annealed microdiamonds creates round ultrasmall nanodiamonds composed of perfectly crystallized cubic-diamond nanocrystals, with fluorescent centers inside the nanocrystal core. Atomic force microscopy and confocal fluorescence microscopy demonstrate that approximately 30% of diamond nanocrystals with a size of less than 10 nm are fluorescent and have a remarkably long spin decoherence time (2.7 mu s for a 7 nm diamond nanocrystal). The presence of a high content of non-fluorescent ultrasmall nanodiamonds can be explained by the limited N concentration and its heterogeneous distribution in the initial raw high-pressure high-temperature diamond. The remarkably long spin decoherence time of the ultrasmall fluorescent nanodiamonds may be due to surface cleaning and nanodiamond fabrication procedures, which result in a low number of spin impurities in and around the nanocrystal.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.diamond.2013.05.006</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5045-8501</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2013-08, Vol.37, p.80-86 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00841449v1 |
source | Elsevier ScienceDirect Journals |
subjects | Annealing Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Diamonds Diffusion interface formation Electrons and positron radiation effects Engineering Sciences Exact sciences and technology Fragmentation Fullerenes and related materials diamonds, graphite Irradiation Lattice vacancies Materials Materials science Microdiamonds Nanocomposites Nanocrystals Nanomaterials Nanoscale materials and structures: fabrication and characterization Nanostructure Other topics in nanoscale materials and structures Physical radiation effects, radiation damage Physics Solid surfaces and solid-solid interfaces Specific materials Structure of solids and liquids crystallography Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescent%20nanodiamonds%20derived%20from%20HPHT%20with%20a%20size%20of%20less%20than%2010%20nm&rft.jtitle=Diamond%20and%20related%20materials&rft.au=BOUDOU,%20Jean-Paul&rft.date=2013-08-01&rft.volume=37&rft.spage=80&rft.epage=86&rft.pages=80-86&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2013.05.006&rft_dat=%3Cproquest_hal_p%3E1513465725%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448723198&rft_id=info:pmid/&rfr_iscdi=true |