Quantum parameter estimation using general single-mode Gaussian states

We calculate the quantum Cramér--Rao bound for the sensitivity with which one or several parameters, encoded in a general single-mode Gaussian state, can be estimated. This includes in particular the interesting case of mixed Gaussian states. We apply the formula to the problems of estimating phase,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2013-10, Vol.88 (4), Article 040102
Hauptverfasser: Pinel, O., Jian, P., Treps, N., Fabre, C., Braun, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 88
creator Pinel, O.
Jian, P.
Treps, N.
Fabre, C.
Braun, D.
description We calculate the quantum Cramér--Rao bound for the sensitivity with which one or several parameters, encoded in a general single-mode Gaussian state, can be estimated. This includes in particular the interesting case of mixed Gaussian states. We apply the formula to the problems of estimating phase, purity, loss, amplitude, and squeezing. In the case of the simultaneous measurement of several parameters, we provide the full quantum Fisher information matrix. Our results unify previously known partial results, and constitute a complete solution to the problem of knowing the best possible sensitivity of measurements based on a single-mode Gaussian state.
doi_str_mv 10.1103/PhysRevA.88.040102
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00835660v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00835660v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-55a4923eed4f7e351ca3fe720e47d6993e561dbd0bf2851aa160cf9792e234323</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsFb_gE_76kPq7C3ZfSzFWqHgBX1epsmkjeRSsptC_70NVeflzAxnDsPH2L2AmRCgHt92x_BBh_nM2hloECAv2ESA04lIpbwcewOJdDq7ZjchfMOptHUTtnwfsI1Dw_fYY0ORek4hVg3Gqmv5EKp2y7fUUo81H4eakqYriD_jEEKFLQ8RI4VbdlViHejuV6fsa_n0uVgl69fnl8V8neRaQ0yMQe2kIip0mZEyIkdVUiaBdFakzikyqSg2BWxKaY1AFCnkpcucJKm0kmrKHs65O6z9vj_92R99h5Vfzdd-3AFYZdIUDuLklWdv3nch9FT-HwjwIzX_R81b68_U1A_EdGHh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum parameter estimation using general single-mode Gaussian states</title><source>American Physical Society Journals</source><creator>Pinel, O. ; Jian, P. ; Treps, N. ; Fabre, C. ; Braun, D.</creator><creatorcontrib>Pinel, O. ; Jian, P. ; Treps, N. ; Fabre, C. ; Braun, D.</creatorcontrib><description>We calculate the quantum Cramér--Rao bound for the sensitivity with which one or several parameters, encoded in a general single-mode Gaussian state, can be estimated. This includes in particular the interesting case of mixed Gaussian states. We apply the formula to the problems of estimating phase, purity, loss, amplitude, and squeezing. In the case of the simultaneous measurement of several parameters, we provide the full quantum Fisher information matrix. Our results unify previously known partial results, and constitute a complete solution to the problem of knowing the best possible sensitivity of measurements based on a single-mode Gaussian state.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.88.040102</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>General Physics ; Physics</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2013-10, Vol.88 (4), Article 040102</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-55a4923eed4f7e351ca3fe720e47d6993e561dbd0bf2851aa160cf9792e234323</citedby><cites>FETCH-LOGICAL-c440t-55a4923eed4f7e351ca3fe720e47d6993e561dbd0bf2851aa160cf9792e234323</cites><orcidid>0000-0001-9778-9025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00835660$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinel, O.</creatorcontrib><creatorcontrib>Jian, P.</creatorcontrib><creatorcontrib>Treps, N.</creatorcontrib><creatorcontrib>Fabre, C.</creatorcontrib><creatorcontrib>Braun, D.</creatorcontrib><title>Quantum parameter estimation using general single-mode Gaussian states</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>We calculate the quantum Cramér--Rao bound for the sensitivity with which one or several parameters, encoded in a general single-mode Gaussian state, can be estimated. This includes in particular the interesting case of mixed Gaussian states. We apply the formula to the problems of estimating phase, purity, loss, amplitude, and squeezing. In the case of the simultaneous measurement of several parameters, we provide the full quantum Fisher information matrix. Our results unify previously known partial results, and constitute a complete solution to the problem of knowing the best possible sensitivity of measurements based on a single-mode Gaussian state.</description><subject>General Physics</subject><subject>Physics</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRsFb_gE_76kPq7C3ZfSzFWqHgBX1epsmkjeRSsptC_70NVeflzAxnDsPH2L2AmRCgHt92x_BBh_nM2hloECAv2ESA04lIpbwcewOJdDq7ZjchfMOptHUTtnwfsI1Dw_fYY0ORek4hVg3Gqmv5EKp2y7fUUo81H4eakqYriD_jEEKFLQ8RI4VbdlViHejuV6fsa_n0uVgl69fnl8V8neRaQ0yMQe2kIip0mZEyIkdVUiaBdFakzikyqSg2BWxKaY1AFCnkpcucJKm0kmrKHs65O6z9vj_92R99h5Vfzdd-3AFYZdIUDuLklWdv3nch9FT-HwjwIzX_R81b68_U1A_EdGHh</recordid><startdate>20131031</startdate><enddate>20131031</enddate><creator>Pinel, O.</creator><creator>Jian, P.</creator><creator>Treps, N.</creator><creator>Fabre, C.</creator><creator>Braun, D.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9778-9025</orcidid></search><sort><creationdate>20131031</creationdate><title>Quantum parameter estimation using general single-mode Gaussian states</title><author>Pinel, O. ; Jian, P. ; Treps, N. ; Fabre, C. ; Braun, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-55a4923eed4f7e351ca3fe720e47d6993e561dbd0bf2851aa160cf9792e234323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>General Physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinel, O.</creatorcontrib><creatorcontrib>Jian, P.</creatorcontrib><creatorcontrib>Treps, N.</creatorcontrib><creatorcontrib>Fabre, C.</creatorcontrib><creatorcontrib>Braun, D.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinel, O.</au><au>Jian, P.</au><au>Treps, N.</au><au>Fabre, C.</au><au>Braun, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum parameter estimation using general single-mode Gaussian states</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2013-10-31</date><risdate>2013</risdate><volume>88</volume><issue>4</issue><artnum>040102</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>We calculate the quantum Cramér--Rao bound for the sensitivity with which one or several parameters, encoded in a general single-mode Gaussian state, can be estimated. This includes in particular the interesting case of mixed Gaussian states. We apply the formula to the problems of estimating phase, purity, loss, amplitude, and squeezing. In the case of the simultaneous measurement of several parameters, we provide the full quantum Fisher information matrix. Our results unify previously known partial results, and constitute a complete solution to the problem of knowing the best possible sensitivity of measurements based on a single-mode Gaussian state.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevA.88.040102</doi><orcidid>https://orcid.org/0000-0001-9778-9025</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 2013-10, Vol.88 (4), Article 040102
issn 1050-2947
1094-1622
language eng
recordid cdi_hal_primary_oai_HAL_hal_00835660v1
source American Physical Society Journals
subjects General Physics
Physics
title Quantum parameter estimation using general single-mode Gaussian states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20parameter%20estimation%20using%20general%20single-mode%20Gaussian%20states&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Pinel,%20O.&rft.date=2013-10-31&rft.volume=88&rft.issue=4&rft.artnum=040102&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.88.040102&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00835660v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true