Pt Particles Functionalized on the Molecular Level as New Nanocomposite Materials for Electrocatalysis

A nanocomposite material consisting of platinum nanoparticles surrounded by an ionic conducting polymer dispersed on carbon Vulcan XC72 was synthesized. The aim of this nanocomposite material is to translate the triple-phase boundary to a molecular level in electrochemical systems involving a polyme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2012-12, Vol.28 (51), p.17832-17840
Hauptverfasser: Ferrandez, Anne-Claire, Baranton, Stève, Bigarré, Janick, Buvat, Pierrick, Coutanceau, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17840
container_issue 51
container_start_page 17832
container_title Langmuir
container_volume 28
creator Ferrandez, Anne-Claire
Baranton, Stève
Bigarré, Janick
Buvat, Pierrick
Coutanceau, Christophe
description A nanocomposite material consisting of platinum nanoparticles surrounded by an ionic conducting polymer dispersed on carbon Vulcan XC72 was synthesized. The aim of this nanocomposite material is to translate the triple-phase boundary to a molecular level in electrochemical systems involving a polymer electrolyte. The ionic conducting polymer is a poly(styrenesulfonic acid) (PSSA, or PSSNa in its sodium form) synthesized by atom-transfer radical polymerization. The polymer has a terminal thiol group to ensure bonding with platinum nanoparticles. The nanocomposite material (Pt-PSSA/C) exhibited thermal stability up to 160 °C and electrochemical stability up to 1 V versus RHE. Compared to a Pt/C catalyst, the nanocomposite catalyst has a lower active surface area but comparable catalytic activity for the oxygen reduction reaction. Furthermore, this nanocomposite material exhibits similar behavior in a fuel cell active layer without Nafion as a classical Pt/C catalyst with Nafion included in the active layer.
doi_str_mv 10.1021/la303588t
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00833897v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273399374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-1971d01ad056f9404910b1f68ce71c9457e3ddd3b1f684594d133115967f33643</originalsourceid><addsrcrecordid>eNpt0UFvFCEUB3BiNHZbPfgFDBcTPYzy5sEwHJumtSZr7UHP5JVhUhp2WIGpqZ_eabtuPXgiefz4k7w_Y29AfATRwqdIKFD1fX3GVqBa0ai-1c_ZSmiJjZYdHrDDUm6EEAaleckOWoQelOxXbLys_JJyDS76ws_mydWQJorhtx94mni99vxrit7NkTJf-1sfORV-4X_xC5qSS5ttKqEuiKrPgWLhY8r8dHlRc3JUKd6VUF6xF-Ny51_vziP24-z0-8l5s_72-cvJ8boh1KY2YDQMAmgQqhuNFNKAuIKx653X4IxU2uMwDPgwk8rIARABlOn0iNhJPGIfHnOvKdptDhvKdzZRsOfHa3s_E6JH7I2-hcW-f7TbnH7OvlS7CcX5GGnyaS4WWo1oDOp_Yl1OpWQ_7rNB2PsK7L6Cxb7dxc5XGz_s5d-dL-DdDlBxFMdMkwvlyXVadQjyyZEr9ibNeaml_OfDP5ivmI0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273399374</pqid></control><display><type>article</type><title>Pt Particles Functionalized on the Molecular Level as New Nanocomposite Materials for Electrocatalysis</title><source>ACS Publications</source><creator>Ferrandez, Anne-Claire ; Baranton, Stève ; Bigarré, Janick ; Buvat, Pierrick ; Coutanceau, Christophe</creator><creatorcontrib>Ferrandez, Anne-Claire ; Baranton, Stève ; Bigarré, Janick ; Buvat, Pierrick ; Coutanceau, Christophe</creatorcontrib><description>A nanocomposite material consisting of platinum nanoparticles surrounded by an ionic conducting polymer dispersed on carbon Vulcan XC72 was synthesized. The aim of this nanocomposite material is to translate the triple-phase boundary to a molecular level in electrochemical systems involving a polymer electrolyte. The ionic conducting polymer is a poly(styrenesulfonic acid) (PSSA, or PSSNa in its sodium form) synthesized by atom-transfer radical polymerization. The polymer has a terminal thiol group to ensure bonding with platinum nanoparticles. The nanocomposite material (Pt-PSSA/C) exhibited thermal stability up to 160 °C and electrochemical stability up to 1 V versus RHE. Compared to a Pt/C catalyst, the nanocomposite catalyst has a lower active surface area but comparable catalytic activity for the oxygen reduction reaction. Furthermore, this nanocomposite material exhibits similar behavior in a fuel cell active layer without Nafion as a classical Pt/C catalyst with Nafion included in the active layer.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la303588t</identifier><identifier>PMID: 23181548</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Catalysis ; Chemical Sciences ; Chemistry ; Colloidal state and disperse state ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Kinetics and mechanism of reactions ; Organic chemistry ; Other ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Langmuir, 2012-12, Vol.28 (51), p.17832-17840</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-1971d01ad056f9404910b1f68ce71c9457e3ddd3b1f684594d133115967f33643</citedby><cites>FETCH-LOGICAL-a379t-1971d01ad056f9404910b1f68ce71c9457e3ddd3b1f684594d133115967f33643</cites><orcidid>0000-0001-5464-7721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la303588t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la303588t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26756314$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23181548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00833897$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrandez, Anne-Claire</creatorcontrib><creatorcontrib>Baranton, Stève</creatorcontrib><creatorcontrib>Bigarré, Janick</creatorcontrib><creatorcontrib>Buvat, Pierrick</creatorcontrib><creatorcontrib>Coutanceau, Christophe</creatorcontrib><title>Pt Particles Functionalized on the Molecular Level as New Nanocomposite Materials for Electrocatalysis</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>A nanocomposite material consisting of platinum nanoparticles surrounded by an ionic conducting polymer dispersed on carbon Vulcan XC72 was synthesized. The aim of this nanocomposite material is to translate the triple-phase boundary to a molecular level in electrochemical systems involving a polymer electrolyte. The ionic conducting polymer is a poly(styrenesulfonic acid) (PSSA, or PSSNa in its sodium form) synthesized by atom-transfer radical polymerization. The polymer has a terminal thiol group to ensure bonding with platinum nanoparticles. The nanocomposite material (Pt-PSSA/C) exhibited thermal stability up to 160 °C and electrochemical stability up to 1 V versus RHE. Compared to a Pt/C catalyst, the nanocomposite catalyst has a lower active surface area but comparable catalytic activity for the oxygen reduction reaction. Furthermore, this nanocomposite material exhibits similar behavior in a fuel cell active layer without Nafion as a classical Pt/C catalyst with Nafion included in the active layer.</description><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Kinetics and mechanism of reactions</subject><subject>Organic chemistry</subject><subject>Other</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0UFvFCEUB3BiNHZbPfgFDBcTPYzy5sEwHJumtSZr7UHP5JVhUhp2WIGpqZ_eabtuPXgiefz4k7w_Y29AfATRwqdIKFD1fX3GVqBa0ai-1c_ZSmiJjZYdHrDDUm6EEAaleckOWoQelOxXbLys_JJyDS76ws_mydWQJorhtx94mni99vxrit7NkTJf-1sfORV-4X_xC5qSS5ttKqEuiKrPgWLhY8r8dHlRc3JUKd6VUF6xF-Ny51_vziP24-z0-8l5s_72-cvJ8boh1KY2YDQMAmgQqhuNFNKAuIKx653X4IxU2uMwDPgwk8rIARABlOn0iNhJPGIfHnOvKdptDhvKdzZRsOfHa3s_E6JH7I2-hcW-f7TbnH7OvlS7CcX5GGnyaS4WWo1oDOp_Yl1OpWQ_7rNB2PsK7L6Cxb7dxc5XGz_s5d-dL-DdDlBxFMdMkwvlyXVadQjyyZEr9ibNeaml_OfDP5ivmI0</recordid><startdate>20121221</startdate><enddate>20121221</enddate><creator>Ferrandez, Anne-Claire</creator><creator>Baranton, Stève</creator><creator>Bigarré, Janick</creator><creator>Buvat, Pierrick</creator><creator>Coutanceau, Christophe</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5464-7721</orcidid></search><sort><creationdate>20121221</creationdate><title>Pt Particles Functionalized on the Molecular Level as New Nanocomposite Materials for Electrocatalysis</title><author>Ferrandez, Anne-Claire ; Baranton, Stève ; Bigarré, Janick ; Buvat, Pierrick ; Coutanceau, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-1971d01ad056f9404910b1f68ce71c9457e3ddd3b1f684594d133115967f33643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Kinetics and mechanism of reactions</topic><topic>Organic chemistry</topic><topic>Other</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrandez, Anne-Claire</creatorcontrib><creatorcontrib>Baranton, Stève</creatorcontrib><creatorcontrib>Bigarré, Janick</creatorcontrib><creatorcontrib>Buvat, Pierrick</creatorcontrib><creatorcontrib>Coutanceau, Christophe</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrandez, Anne-Claire</au><au>Baranton, Stève</au><au>Bigarré, Janick</au><au>Buvat, Pierrick</au><au>Coutanceau, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pt Particles Functionalized on the Molecular Level as New Nanocomposite Materials for Electrocatalysis</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2012-12-21</date><risdate>2012</risdate><volume>28</volume><issue>51</issue><spage>17832</spage><epage>17840</epage><pages>17832-17840</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>A nanocomposite material consisting of platinum nanoparticles surrounded by an ionic conducting polymer dispersed on carbon Vulcan XC72 was synthesized. The aim of this nanocomposite material is to translate the triple-phase boundary to a molecular level in electrochemical systems involving a polymer electrolyte. The ionic conducting polymer is a poly(styrenesulfonic acid) (PSSA, or PSSNa in its sodium form) synthesized by atom-transfer radical polymerization. The polymer has a terminal thiol group to ensure bonding with platinum nanoparticles. The nanocomposite material (Pt-PSSA/C) exhibited thermal stability up to 160 °C and electrochemical stability up to 1 V versus RHE. Compared to a Pt/C catalyst, the nanocomposite catalyst has a lower active surface area but comparable catalytic activity for the oxygen reduction reaction. Furthermore, this nanocomposite material exhibits similar behavior in a fuel cell active layer without Nafion as a classical Pt/C catalyst with Nafion included in the active layer.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23181548</pmid><doi>10.1021/la303588t</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5464-7721</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2012-12, Vol.28 (51), p.17832-17840
issn 0743-7463
1520-5827
language eng
recordid cdi_hal_primary_oai_HAL_hal_00833897v1
source ACS Publications
subjects Applied sciences
Catalysis
Chemical Sciences
Chemistry
Colloidal state and disperse state
Electrochemistry
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
General and physical chemistry
Kinetics and mechanism of reactions
Organic chemistry
Other
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Pt Particles Functionalized on the Molecular Level as New Nanocomposite Materials for Electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pt%20Particles%20Functionalized%20on%20the%20Molecular%20Level%20as%20New%20Nanocomposite%20Materials%20for%20Electrocatalysis&rft.jtitle=Langmuir&rft.au=Ferrandez,%20Anne-Claire&rft.date=2012-12-21&rft.volume=28&rft.issue=51&rft.spage=17832&rft.epage=17840&rft.pages=17832-17840&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la303588t&rft_dat=%3Cproquest_hal_p%3E1273399374%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273399374&rft_id=info:pmid/23181548&rfr_iscdi=true