On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials

We prove that a linear d -dimensional Schrödinger equation with an x -periodic and t -quasiperiodic potential reduces to an autonomous equation for most values of the frequency vector. The reduction is made by means of a non-autonomous linear transformation of the space of x -periodic functions. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2009-02, Vol.286 (1), p.125-135
Hauptverfasser: Eliasson, Håkan L., Kuksin, Sergei B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue 1
container_start_page 125
container_title Communications in mathematical physics
container_volume 286
creator Eliasson, Håkan L.
Kuksin, Sergei B.
description We prove that a linear d -dimensional Schrödinger equation with an x -periodic and t -quasiperiodic potential reduces to an autonomous equation for most values of the frequency vector. The reduction is made by means of a non-autonomous linear transformation of the space of x -periodic functions. This transformation is a quasiperiodic function of t .
doi_str_mv 10.1007/s00220-008-0683-2
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00832745v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00832745v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-b9c546a10c0e7fa799646789ef3154e480d04874897558e4dc4e17deccf200a43</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAHbesGBhGDuO7SyrqlCkSuWnrC3XcairNCl2AurFuAAXI1EQS1YjzXzvk-YhdEnhhgLI2wjAGBAARUCohLAjNKI8YQQyKo7RCIACSQQVp-gsxi0AZEyIEVouK_zs8tb6tS99c8B1gV_sJnx_5b56cwHP3lvT-LqK-NM3G_zUmuj3Lvg69xb7Cq_8zuHHunFV400Zz9FJ0Q138TvH6PVutprOyWJ5_zCdLIhNUtaQdWZTLgwFC04WRmaZ4EKqzBUJTbnjCnLgSnKVyTRVjueWOypzZ23BAAxPxuh66N2YUu-D35lw0LXxej5Z6H7XmUiY5OkH7bJ0yNpQxxhc8QdQ0L09PdjrGd3b06xjrgZmb6I1ZRFMZX38AxkFKlPR59iQi92pF6a3dRuq7vV_yn8Aezt-rQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Eliasson, Håkan L. ; Kuksin, Sergei B.</creator><creatorcontrib>Eliasson, Håkan L. ; Kuksin, Sergei B.</creatorcontrib><description>We prove that a linear d -dimensional Schrödinger equation with an x -periodic and t -quasiperiodic potential reduces to an autonomous equation for most values of the frequency vector. The reduction is made by means of a non-autonomous linear transformation of the space of x -periodic functions. This transformation is a quasiperiodic function of t .</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-008-0683-2</identifier><identifier>CODEN: CMPHAY</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis of PDEs ; Classical and Quantum Gravitation ; Complex Systems ; Exact sciences and technology ; Functional analysis ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical methods in physics ; Mathematical Physics ; Mathematics ; Other topics in mathematical methods in physics ; Partial differential equations ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Sciences and techniques of general use ; Theoretical</subject><ispartof>Communications in mathematical physics, 2009-02, Vol.286 (1), p.125-135</ispartof><rights>Springer-Verlag 2008</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-b9c546a10c0e7fa799646789ef3154e480d04874897558e4dc4e17deccf200a43</citedby><cites>FETCH-LOGICAL-c352t-b9c546a10c0e7fa799646789ef3154e480d04874897558e4dc4e17deccf200a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-008-0683-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-008-0683-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21017562$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00832745$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eliasson, Håkan L.</creatorcontrib><creatorcontrib>Kuksin, Sergei B.</creatorcontrib><title>On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We prove that a linear d -dimensional Schrödinger equation with an x -periodic and t -quasiperiodic potential reduces to an autonomous equation for most values of the frequency vector. The reduction is made by means of a non-autonomous linear transformation of the space of x -periodic functions. This transformation is a quasiperiodic function of t .</description><subject>Analysis of PDEs</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical methods in physics</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Other topics in mathematical methods in physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAHbesGBhGDuO7SyrqlCkSuWnrC3XcairNCl2AurFuAAXI1EQS1YjzXzvk-YhdEnhhgLI2wjAGBAARUCohLAjNKI8YQQyKo7RCIACSQQVp-gsxi0AZEyIEVouK_zs8tb6tS99c8B1gV_sJnx_5b56cwHP3lvT-LqK-NM3G_zUmuj3Lvg69xb7Cq_8zuHHunFV400Zz9FJ0Q138TvH6PVutprOyWJ5_zCdLIhNUtaQdWZTLgwFC04WRmaZ4EKqzBUJTbnjCnLgSnKVyTRVjueWOypzZ23BAAxPxuh66N2YUu-D35lw0LXxej5Z6H7XmUiY5OkH7bJ0yNpQxxhc8QdQ0L09PdjrGd3b06xjrgZmb6I1ZRFMZX38AxkFKlPR59iQi92pF6a3dRuq7vV_yn8Aezt-rQ</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Eliasson, Håkan L.</creator><creator>Kuksin, Sergei B.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20090201</creationdate><title>On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials</title><author>Eliasson, Håkan L. ; Kuksin, Sergei B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-b9c546a10c0e7fa799646789ef3154e480d04874897558e4dc4e17deccf200a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analysis of PDEs</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical methods in physics</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Other topics in mathematical methods in physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eliasson, Håkan L.</creatorcontrib><creatorcontrib>Kuksin, Sergei B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eliasson, Håkan L.</au><au>Kuksin, Sergei B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>286</volume><issue>1</issue><spage>125</spage><epage>135</epage><pages>125-135</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><coden>CMPHAY</coden><abstract>We prove that a linear d -dimensional Schrödinger equation with an x -periodic and t -quasiperiodic potential reduces to an autonomous equation for most values of the frequency vector. The reduction is made by means of a non-autonomous linear transformation of the space of x -periodic functions. This transformation is a quasiperiodic function of t .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00220-008-0683-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2009-02, Vol.286 (1), p.125-135
issn 0010-3616
1432-0916
language eng
recordid cdi_hal_primary_oai_HAL_hal_00832745v1
source SpringerLink Journals - AutoHoldings
subjects Analysis of PDEs
Classical and Quantum Gravitation
Complex Systems
Exact sciences and technology
Functional analysis
Mathematical analysis
Mathematical and Computational Physics
Mathematical methods in physics
Mathematical Physics
Mathematics
Other topics in mathematical methods in physics
Partial differential equations
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Sciences and techniques of general use
Theoretical
title On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Reducibility%20of%20Schr%C3%B6dinger%20Equations%20with%20Quasiperiodic%20in%20Time%20Potentials&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Eliasson,%20H%C3%A5kan%20L.&rft.date=2009-02-01&rft.volume=286&rft.issue=1&rft.spage=125&rft.epage=135&rft.pages=125-135&rft.issn=0010-3616&rft.eissn=1432-0916&rft.coden=CMPHAY&rft_id=info:doi/10.1007/s00220-008-0683-2&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00832745v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true