On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials
We prove that a linear d -dimensional Schrödinger equation with an x -periodic and t -quasiperiodic potential reduces to an autonomous equation for most values of the frequency vector. The reduction is made by means of a non-autonomous linear transformation of the space of x -periodic functions. Thi...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2009-02, Vol.286 (1), p.125-135 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135 |
---|---|
container_issue | 1 |
container_start_page | 125 |
container_title | Communications in mathematical physics |
container_volume | 286 |
creator | Eliasson, Håkan L. Kuksin, Sergei B. |
description | We prove that a linear
d
-dimensional Schrödinger equation with an
x
-periodic and
t
-quasiperiodic potential reduces to an autonomous equation for most values of the frequency vector. The reduction is made by means of a non-autonomous linear transformation of the space of
x
-periodic functions. This transformation is a quasiperiodic function of
t
. |
doi_str_mv | 10.1007/s00220-008-0683-2 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00832745v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00832745v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-b9c546a10c0e7fa799646789ef3154e480d04874897558e4dc4e17deccf200a43</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAHbesGBhGDuO7SyrqlCkSuWnrC3XcairNCl2AurFuAAXI1EQS1YjzXzvk-YhdEnhhgLI2wjAGBAARUCohLAjNKI8YQQyKo7RCIACSQQVp-gsxi0AZEyIEVouK_zs8tb6tS99c8B1gV_sJnx_5b56cwHP3lvT-LqK-NM3G_zUmuj3Lvg69xb7Cq_8zuHHunFV400Zz9FJ0Q138TvH6PVutprOyWJ5_zCdLIhNUtaQdWZTLgwFC04WRmaZ4EKqzBUJTbnjCnLgSnKVyTRVjueWOypzZ23BAAxPxuh66N2YUu-D35lw0LXxej5Z6H7XmUiY5OkH7bJ0yNpQxxhc8QdQ0L09PdjrGd3b06xjrgZmb6I1ZRFMZX38AxkFKlPR59iQi92pF6a3dRuq7vV_yn8Aezt-rQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Eliasson, Håkan L. ; Kuksin, Sergei B.</creator><creatorcontrib>Eliasson, Håkan L. ; Kuksin, Sergei B.</creatorcontrib><description>We prove that a linear
d
-dimensional Schrödinger equation with an
x
-periodic and
t
-quasiperiodic potential reduces to an autonomous equation for most values of the frequency vector. The reduction is made by means of a non-autonomous linear transformation of the space of
x
-periodic functions. This transformation is a quasiperiodic function of
t
.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-008-0683-2</identifier><identifier>CODEN: CMPHAY</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis of PDEs ; Classical and Quantum Gravitation ; Complex Systems ; Exact sciences and technology ; Functional analysis ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical methods in physics ; Mathematical Physics ; Mathematics ; Other topics in mathematical methods in physics ; Partial differential equations ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Sciences and techniques of general use ; Theoretical</subject><ispartof>Communications in mathematical physics, 2009-02, Vol.286 (1), p.125-135</ispartof><rights>Springer-Verlag 2008</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-b9c546a10c0e7fa799646789ef3154e480d04874897558e4dc4e17deccf200a43</citedby><cites>FETCH-LOGICAL-c352t-b9c546a10c0e7fa799646789ef3154e480d04874897558e4dc4e17deccf200a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-008-0683-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-008-0683-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21017562$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00832745$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eliasson, Håkan L.</creatorcontrib><creatorcontrib>Kuksin, Sergei B.</creatorcontrib><title>On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We prove that a linear
d
-dimensional Schrödinger equation with an
x
-periodic and
t
-quasiperiodic potential reduces to an autonomous equation for most values of the frequency vector. The reduction is made by means of a non-autonomous linear transformation of the space of
x
-periodic functions. This transformation is a quasiperiodic function of
t
.</description><subject>Analysis of PDEs</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical methods in physics</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Other topics in mathematical methods in physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAHbesGBhGDuO7SyrqlCkSuWnrC3XcairNCl2AurFuAAXI1EQS1YjzXzvk-YhdEnhhgLI2wjAGBAARUCohLAjNKI8YQQyKo7RCIACSQQVp-gsxi0AZEyIEVouK_zs8tb6tS99c8B1gV_sJnx_5b56cwHP3lvT-LqK-NM3G_zUmuj3Lvg69xb7Cq_8zuHHunFV400Zz9FJ0Q138TvH6PVutprOyWJ5_zCdLIhNUtaQdWZTLgwFC04WRmaZ4EKqzBUJTbnjCnLgSnKVyTRVjueWOypzZ23BAAxPxuh66N2YUu-D35lw0LXxej5Z6H7XmUiY5OkH7bJ0yNpQxxhc8QdQ0L09PdjrGd3b06xjrgZmb6I1ZRFMZX38AxkFKlPR59iQi92pF6a3dRuq7vV_yn8Aezt-rQ</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Eliasson, Håkan L.</creator><creator>Kuksin, Sergei B.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20090201</creationdate><title>On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials</title><author>Eliasson, Håkan L. ; Kuksin, Sergei B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-b9c546a10c0e7fa799646789ef3154e480d04874897558e4dc4e17deccf200a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analysis of PDEs</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical methods in physics</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Other topics in mathematical methods in physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eliasson, Håkan L.</creatorcontrib><creatorcontrib>Kuksin, Sergei B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eliasson, Håkan L.</au><au>Kuksin, Sergei B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>286</volume><issue>1</issue><spage>125</spage><epage>135</epage><pages>125-135</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><coden>CMPHAY</coden><abstract>We prove that a linear
d
-dimensional Schrödinger equation with an
x
-periodic and
t
-quasiperiodic potential reduces to an autonomous equation for most values of the frequency vector. The reduction is made by means of a non-autonomous linear transformation of the space of
x
-periodic functions. This transformation is a quasiperiodic function of
t
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00220-008-0683-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2009-02, Vol.286 (1), p.125-135 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00832745v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis of PDEs Classical and Quantum Gravitation Complex Systems Exact sciences and technology Functional analysis Mathematical analysis Mathematical and Computational Physics Mathematical methods in physics Mathematical Physics Mathematics Other topics in mathematical methods in physics Partial differential equations Physics Physics and Astronomy Quantum Physics Relativity Theory Sciences and techniques of general use Theoretical |
title | On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Reducibility%20of%20Schr%C3%B6dinger%20Equations%20with%20Quasiperiodic%20in%20Time%20Potentials&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Eliasson,%20H%C3%A5kan%20L.&rft.date=2009-02-01&rft.volume=286&rft.issue=1&rft.spage=125&rft.epage=135&rft.pages=125-135&rft.issn=0010-3616&rft.eissn=1432-0916&rft.coden=CMPHAY&rft_id=info:doi/10.1007/s00220-008-0683-2&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00832745v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |